
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Reverse Engineering Variability from Product
Variants

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Masterstudium

Informatik

Eingereicht von:

Lukas Linsbauer, 0956251

Angefertigt am:

Institute for Systems Engineering and Automation

Beurteilung:

Univ.-Prof. Dr. Alexander Egyed M. Sc.

Mitwirkung:

Dr. Roberto Erick Lopez-Herrejon M. Sc.

Linz, September, 2013

Reverse Engineering Variability from Product

Variants

Lukas Linsbauer

Systems Engineering and Automation

Johannes Kepler University Linz

Austria

k0956251@students.jku.at

September 26, 2013

(last updated February 17, 2014)

Kurzfassung

Unternehmen entwickeln oft ähnliche Softwareproduktvarianten die manche

Teile gemeinsam haben und sich in anderen Teilen unterscheiden. Die An-

zahl solcher Varianten steigt mit der Zeit durch das Kopieren von beste-

henden Varianten und anschließendes Anpassen um neuen Anforderungen

gerecht zu werden. Ab einem gewissen Punkt ist die Wartung von beste-

henden und die Erstellung von neuen Varianten kaum mehr durchführbar.

Änderungen an Features oder das Beheben von Fehlern muss für jede Vari-

ante wiederholt werden die das betroffene Feature implementiert was für eine

große Anzahl von Varianten sehr fehleranfällig und kostspielig ist. Außer-

dem wird es mit vielen Produktvarianten sehr schwierig zu entscheiden

welche Teile von welchen Varianten wiederverwendet werden sollten für

die Erstellung von neuen Varianten. Eine Option wäre die bestehenden

ähnlichen Softwareproduktvarianten in ein einziges, konfigurierbares System

überzuführen oder gar sie von Beginn an als ein solches System zu entwick-

eln. Dies nimmt jedoch eine sehr lange Zeit in Anspruch und erfordert im

Vorfeld hohe Investitionen von Zeit und Geld was sich Unternehmen oft

nicht leisten können. Außerdem würden sie damit viel Flexibilität einbüßen

in Bezug auf die Umsetzung von neuen Anforderungen und Produktvari-

anten für die das System ursprünglich nicht entworfen wurde.

Deshalb ist das Ziel dieser Arbeit eine teilweise Lösung für alle diese Her-

ausforderungen zu schaffen durch automatisierte Extraktion von Variabilität

aus existierenden Softwareproduktvarianten und die gezielte Wiederverwen-

dung von bestehenden Implementierungsteilen um die Wartung zu verein-

fachen und die Erstellung von neuen Varianten zu unterstützen. Zu diesem

Zweck werden automatisch Traces von sowohl Features als auch Featurein-

teraktionen zu beliebigen Implementierungsartefakten (Quellcode, Modelle,

Dokumentation, etc.) erstellt indem bestehende Produktvarianten miteinan-

II

der verglichen werden. Zusätzlich werden Abhängigkeiten zwischen Im-

plementierungsteilen extrahiert die als eine Art Variabilitätsmodell dienen

können.

Abstract

Companies often develop a set of similar software product variants that have

some parts in common while differing in other parts. The number of such

variants often increases over time by copying existing ones and adapting

them to fit new requirements. At some point the maintenance of existing

variants and the creation of new ones becomes unmanagable. Changes to

features or bugfixes have to be replicated in every variant that implements

the feature which is error prone and costly to do for a large number of

variants. Also, when creating new variants it becomes difficult to decide

which assets from what existing variants to reuse. One option would be

to refactor such a set of related software product variants into a single,

configurable system representation or even develop them like this from the

start. But this takes a very long time to do and requires a major upfront

investment of time and money which companies often cannot afford. Also

they then lack the flexibility when it comes to new requirements and product

variants that the system was not initially designed for.

Therefore this thesis aims to provide a partial solution to all these chal-

lenges by providing automated support for reverse engineering variability

from existing software product variants and guiding reuse of assets, easing

their maintenance and supporting the creation of new variants. For this

purpose traces from features as well as feature interactions to implementa-

tion artifacts of arbitrary types (source code, models, documentation, etc.)

are established automatically by comparing existing product variants with

each other. Additionally dependencies between implementation assets are

extracted that can serve as some form of variability model.

IV

Contents

1 Introduction 1

2 Background 5

2.1 Software Product Lines (SPLs) 5

2.2 Feature Models (FMs) . 7

2.3 Clone-and-Own . 9

3 Basics and Example 11

4 Extraction 21

4.1 Traceability . 22

4.2 Ordering . 28

4.3 Dependencies . 32

4.4 Identifiers . 33

5 Composition 37

5.1 Warnings . 38

5.2 Dependencies . 38

5.3 Tool . 39

6 Approach 43

6.1 Incremental Way of Use . 45

6.2 Legacy Recovery . 45

7 Implementation 47

7.1 Features and Modules . 47

7.2 Nodes and Artifacts . 49

7.3 Sequence Graph . 51

7.4 Traversals . 52

VI CONTENTS

7.5 Parsers . 54

7.5.1 Java Parser . 54

7.5.2 Ecore Parser . 54

8 Evaluation 55

8.1 Case Studies . 55

8.1.1 Draw . 56

8.1.2 VOD . 56

8.1.3 ArgoUML . 57

8.1.4 ModelAnalyzer . 57

8.2 Dependency Graphs . 58

8.3 Extraction Metrics . 60

8.3.1 Runtimes . 60

8.3.2 Modules per Order . 61

8.3.3 Artifacts . 63

8.3.4 Associations . 64

8.3.5 Distinguishability . 64

8.4 Composition Metrics . 66

8.4.1 Correctness . 68

8.4.2 Completeness . 68

8.5 Analysis . 70

9 Threats to Validity 73

10 Related Work 75

11 Conclusions 77

12 Future Work 79

Chapter 1

Introduction

Many companies develop custom software for their clients. They start out by

developing an initial variant that is tailored specifically to a certain client.

When others come along that need similar yet slightly differing solutions

often these companies copy the closest variant they have and adapt it to

fit the new clients’ needs. This is repeated for every new client, which

leads to an ever growing portfolio of related software product variants, a

product portfolio. However, over time the number of variants will become

too large to be maintained. A typical problem in maintaining large sets of

related product variants are bugfixes or changes to features that have to be

replicated in every product that implements this features, which becomes

error prone, very inefficient and costly.

At that point companies might want to refactor their product portfolio

into a single, configurable system. This would ease the maintenance signifi-

cantly because bugfixes and changes to features no longer have to be made

for every variant separately but instead only need to be made once. Ad-

ditionally, due to the systematic reuse, time-to-market would be improved

once such a system has been built. However, such a refactoring can be very

costly and take a very long time (often several years) [Rubin et al., 2013]

during which the company cannot just stop maintaining the existing vari-

ants or developing new variants. These processes have to run in parallel, so

once the product family was refactored there is the risk that it is already

outdated or will become outdated very soon, since for such systems usually

the variability and all possible variants have to be planned beforehand. This

is also why building such a single, configurable system from the very begin-

2 CHAPTER 1. INTRODUCTION

ning usually is also not an option, because it is often not possible to plan

for all future needs that might arise with new customers and an adaption is

often difficult. Additionally building such a system requires major upfront

investments in terms of time (time until the first products can hit the market

is very high) and money, which companies often cannot afford.

This is why in practice many companies want to stick with their origi-

nal approach of copying and adapting existing variants because it requires

no major upfront investments, reduces time-to-market for the initial prod-

ucts and is very flexible when facing new requirements. However, they lack

methodology and tool support for systematic reuse and for dealing with

maintanance issues that arise with extensive duplication.

The goal of this thesis is to find a way to deal with all these issues and

enabling companies to leverage the benefits of both practices. We want to

allow for the high flexibility without the problems in maintenance while still

not requiring major upfront investments of time and money. Also we want

to combine the low time-to-market of the copying approach for the initial

variants while taking advantage of the improved time-to-market for later

product variants that a single, configurable system representation would

allow for.

We do this by automatically reverse engineering variability either from a

portfolio of already existing product variants or incrementally for every new

product that is generated, allowing for easier maintenance and systematic

reuse while still allowing for the flexibility of creating arbitrary new variants

on demand. Even more so, using the extracted information the cloning step

can be partially automated and the composition of new variants can be

supported through guided reuse [Fischer, 2013]. Based on this we propose

an approach for supporting the development and maintenance of a product

portfolio.

Possible application scenarios for this approach are: (1) the reverse en-

gineering of legacy software product variants into a single system represen-

tation, (2) the extension of an already existing single system representation

beyond what it was initially designed for, (3) the approach being applied

directly as a development paradigm (ideally from the very beginning of a

software development process) to manage variability, reuse and maintenance

to leverage all its benefits, or (4) simply the extraction of useful traceability

and dependency information to support maintenance.

3

The remainder of this thesis is structured as follows: the following Chap-

ter 2 introduces the relevant background, in Chapter 3 the basic data struc-

tures are introduced along with an example that will be used for illustration

throughout this thesis. In Chapter 4 the extraction process is presented

which is the core of this thesis. Chapter 5 gives a brief overview about

the composition [Fischer, 2013] and Chapter 6 outlines an approach for sup-

porting clone-and-own using the presented extraction and composition pro-

cedures. Chapter 7 gives an overview of the implementation of the extraction

framework and Chapter 8 shows the results of the performed evaluation. Fi-

nally Chapter 9 talks about possible threats to validity, Chapter 10 gives

an overview about related work, Chapter 11 summarizes and concludes and

Chapter 12 gives an outlook on future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter gives an overview about relevant background for this thesis. It

introduces two concrete approaches for developing sets of related software

product variants that the presented approach has to compete with.

2.1 Software Product Lines (SPLs)

Product lines have existed for a very long time in traditional manufactoring,

as for example in the automotive industry. A typical example for a product

line would be the manufactoring process of a car of a certain type. Cars of the

same model are similar, yet not identical. They might share some common

traits while varying in others. One instance of a car might have a different

color, another a different engine or an extra feature like air conditioning.

Each of these are features of a car that can be composed in various ways.

Some features are optional and represent the variable part of the car while

others may be mandatory and are the same for every instance of this type

of car. This is usually expressed in a variability model (see next section).

Every instance of a car of this model is then composed of a set of assets

that represent certain features instead of developing each car from scratch

depending on customers’ needs.

This concept is also applied in software engineering in the form of strate-

gic, planned reuse. A family of related software products is built using a

set of assets, each implementing certain features. These assets are designed

and developed for reuse. This way the products can be built to address cer-

tain market segments or types of customers without building every software

6 CHAPTER 2. BACKGROUND

product from scratch. Clements and Northrop define an SPL as follows:

Definition 1 A Software Product Line (SPL) is a set of software-

intensive systems that share a common, managed set of features satis-

fying the specific needs of a particular market segment or mission and

that are developed from a common set of core assets in a prescribed way

[Clements and Northrop, 2002].

Hence a software product line is an example of a single, configurable

representation of a software system.

According to van d. Linden et al. [van d. Linden et al., 2007] software

product line engineering comprises two life-cycles: domain-engineering and

application engineering (see Figure 2.1). Domain engineering results in the

common assets that together form the product line’s platform. It also en-

sures that the platform has the variability that is needed to support the

desired scope of products. Application engineering develops the products in

the product line. It results in the delivered products. These two life-cycles

consist of sub-processes that interact with each other. The domain engineer-

ing sub-processes result in common assets that are used in their application

engineering counterparts to create products. In return the application engi-

neering sub-processes generate feedback that is used in domain engineering

to improve the common assets.

According to Clements and Northrop [Clements and Northrop, 2002] on

the other hand there are three essential product line activities: management,

core asset development and product development (see Figure 2.2), where core

asset development corresponds to domain engineering and product develop-

ment corresponds to application engineering [Northrop, 2008].

A product line strategy in software engineering can have a lot of ben-

efits. It can lead to improvements in cost, quality, productivity and time-

to-market [Clements and Northrop, 2002, van d. Linden et al., 2007]. How-

ever, applying the concept of product lines in software engineering efficiently

and being able to handle the complexity of large product lines at all requires

proper techniques and tool support. Also it requires a lot of upfront invest-

ments of time and money to initially create the product line. Also future

requirements have to be known upfront in order to be able to design the

system as a product line.

In addition, there exist a lot of legacy software products that may be

2.2. FEATURE MODELS (FMS) 7

Figure 2.1: SPLE Life-Cycles [Metzger and Pohl, 2007]

similar but were not designed as a product line from the start. In such cases

it may be worth it to refactor these products into a software product line

in order to be able to benefit from the advantages. However, this again

requires a lot of time during which the regular development process of a

company cannot just stop. The process of refactoring a product portfolio

into a product line and the maintenance and development of the legacy soft-

ware variants have to run in parallel, which makes it even more challenging

[Rubin et al., 2013].

2.2 Feature Models (FMs)

Feature Models (FMs) are used to model variability and commonality in

SPLs. A feature model describes the features of an SPL and their relations

to each other. It is a tree structure with the nodes being features. The

8 CHAPTER 2. BACKGROUND

Figure 2.2: Essential Product Line Activities [Northrop, 2008]

root node of a feature model is always included in all products. A feature

can only be part of a product if its parent feature is also part of it. A

feature can be mandatory (denoted with a filled circle at the child end of

an edge) or optional (denoted with an empty circle at the child end of an

edge). A mandatory feature is part of a product whenever its parent feature

is. An optional feature can but need not be part of a product if its parent is.

Features can be grouped into an inclusive-or relation (filled arc) where one or

more features of the group can be selected or an exclusive-or relation (empty

arc) where exactly one feature must be selected. [Haslinger et al., 2011]

In addition to parent-child relations there can also be relationships be-

tween features across the tree structure of the feature model. These are

called cross-tree constriants (CTCs). A requires constraint expressed that

the presence of a feature A implies the presence of another feature B and is

denoted as a dashed single-arrow line from A to B. An excludes constraint

expresses that if a feature A is selected another feature B must not be se-

lected which is denoted as a dashed double-arrow line between A and B.

[Haslinger et al., 2011]

An abstract example of a feature model is given in Figure 2.3. The

feature Root is always selected in every product. Feature A is mandatory

2.3. CLONE-AND-OWN 9

and therefore also always selected. Among its three children F, G and H

exactly one has to be selected. Among features C and D at least one has to

be selected. Features B and E are both optional. However, if feature E is

selected then also feature H must be selected and therefore features F and

G cannot be selected. And if feature B is selected then D must not be and

vice versa as they exclude each other.

Root

A B C D E

F G H
requires

excludes

Figure 2.3: Abstract Feature Model Example

2.3 Clone-and-Own

Clone-and-Own is an ad-hoc software development paradigm that is often

applied in practice, sometimes due to lack of a better alternative, sometimes

because the transition to an alternative approach would be too expensive

and sometimes on purpose [Dubinsky et al., 2013]. New product variants are

built by cloning an existing variant that is closest to the new requirements

and adapting it, possibly by also reusing parts from other existing variants

in the product portfolio, to fit the new specifications.

Advantages are that this is a conceptually simple way to develop new

product variants, and it is also very flexible. A new variant can be created

any time without a lot of upfront investments of time and money.

However, as it lacks methodology and tool support it also comes with

significant disadvantages. Due to the fact that reuse happens in an unstruc-

tured way and features are replicated in a lot of product variants simply

by duplicating them the maintenance of the product portfolio becomes in-

creasingly challenging the more variants there are. Bugfixes or changes to

features have to be replicated in every product variant that implements the

10 CHAPTER 2. BACKGROUND

feature which is error prone and can become very expensive and time con-

suming. Also it becomes increasingly difficult for large product portfolios to

decide which parts of what variants to clone when creating a new variant.

Chapter 3

Basics and Example

This chapter introduces the basic data structures along with a simple ex-

ample that will be used for illustration throughout the remainder of this

thesis. Consider a small portfolio of simple drawing applications of which a

company has so far developed and currently maintains three variants that

are shown in Table 3.1. In this domain products implement a subset of the

following features: a basic drawing area (BASE), drawing a line on the canvas

(LINE), drawing a rectangle on the canvas (RECT), wiping the canvas clean

(WIPE) and selecting a color to draw with (COLOR).

Products BASE LINE RECT COLOR WIPE

Product P1 X X X
Product P2 X X X
Product P3 X X X X

Table 3.1: Initial Drawing Application Product Variants

In addition to the set of features that a variant provides we also know

about each product variant its implementation artifacts, which in the case of

the drawing applications are Java source code. The source code for product

P1 is shown in Figure 3.1.

The source code will be represented in the form of a syntax tree. The

chosen representation for implementation artifacts however shall be generic

and general purpose. It shall not be specific to programming languages

but also be applicable to e.g. models, documentation, test cases or any

other kind of artifacts. The chosen representation therefore is a generic

tree structure consisting of nodes with exactly one parent and an arbitrary

12 CHAPTER 3. BASICS AND EXAMPLE

1 class Canvas {

2 List <Line > lines;

3 void wipe() {

4 this.lines.clear();

5 }

6 ...

7 }

8 class Line {

9 Line(Point start) {...}

10 ...

11 }

12 class Main extends JFrame{

13 initContentPane () {

14 toolPanel.add(lineButton);

15 toolPanel.add(wipeButton);

16 }

17 ...

18 }

Figure 3.1: Source Code Snippets for Product P1 (BASE, LINE, WIPE)

number of children. Every node contains an artifact. This representation,

since it is a very universal tree structure that is not in any way specific to a

programming language, can also be used to represent arbitrary models, like

UML diagrams in Ecore format.

In what follows we access elements of a tuple by means of the | operator

followed by the elements’s name, e.g. T |Element would access the element

Element of tuple T .

Definition 2 An artifact A ∈ A (given a universe of artifacts A) is defined

as a three-tuple (Identifier, Uses, UsedBy) where Identifier is an arbi-

trary identifier for the artifact, Uses ⊆ A is the set of artifacts that A uses

(i.e. A depends on) and UsedBy ⊆ A is the set of artifacts that use A (i.e.

depend on A). The following always holds: A2 ∈ A ∧A2 ∈ A|UsedBy ⇔ A ∈
A2|Uses. Two artifacts A and A2 are equivalent iff their identifiers are equiv-

alent, i.e. A ≡ A2 ⇔ A|Identifier ≡ A2|Identifier. We use ε to denote the

empty artifact ε = (−, ∅, ∅). We denote an artifact by its identifier preceded

by #, i.e. the artifact representing class Canvas is denoted as #Canvas.

An artifact can reference other artifacts that it depends on, e.g. artifacts

representing method calls or field accesses would depend on the method or

the field respectively.

13

Definition 3 A node N ∈ AN (given a universe of nodes AN) is a six-tuple

(SequenceNumber, Artifact, Type, Children, Ordered, SequenceGraph)

where SequenceNumber ∈ N, Artifact ∈ A, Type ∈ {0, 1}. Children

is the set of child nodes. Ordered ∈ {0, 1} and SequenceGraph is a

sequence graph. Two nodes N1 and N2 are equivalent iff their sequence

numbers are equal and their artifacts are equivalent, i.e. N1 ≡ N2 ⇔
(N1|SequenceNumber = N2|SequenceNumber ∧ N1|Artifact ≡ N2|Artifact). We

use ϑ to denote the empty node ϑ = (0, ε, 0, ∅, 0,−). We denote nodes by

the identifier of their artifact preceded by $, i.e. the node containing the

artifact representing class Canvas is denoted as $Canvas. We call the trees

made up of such nodes artifact trees.

A node N can be of type solid (i.e. N |Type = 1) or of type weak (i.e.

N |Type = 0). A node of type weak inside of an artifact tree is just a place-

holder to keep a path to its children, e.g. to identify a statement we also

need to keep track of the containing method and class. A leaf node always

has to be a solid node, i.e. a weak node only occurs if at least one of its

subtrees contains a solid node. We do not consider artifacts that are con-

tained in weak nodes as part of the tree. This will be used later during the

traceability extraction to express for example that a statement but not its

containing method are part of a trace.

Additionally a node N can either be an ordered node (i.e. N |Ordered = 1)

or an unordered node (i.e. N |Ordered = 0). For ordered nodes the order of

their children matters which is for example the case for nodes representing

methods as the order of statements matters. The children of an ordered

node hence have a specific order that is maintained in the node’s sequence

graph (N |SequenceGraph) which will be explained later.

An artifact does not have to be unique to a product and also not within

one product. An artifact can occur many times at many different places

inside of many tress. For example an artifact representing a statement

like lines.clear(); could occur in many methods or even multiple times

inside of one method. So when asking for a specific instance of an arti-

fact and whether it is part of a product or not (e.g. should statement

lines.clear(); go into line 1 of method wipe(); or not?) then also its

position within the artifact tree has to be considered. So we are not asking if

an artifact #lines.clear(); should be included but rather if the concrete

instance contained in the node $lines.clear(); should be included.

14 CHAPTER 3. BASICS AND EXAMPLE

Based on these we define a product as follows:

Definition 4 A product P ∈ P is a two-tuple (Features, RootNode) where

Features is the set of features that a product provides and RootNode =

(0, ε, 1, Nodes, 0,−) with Nodes being the set of nodes that contain the highest

level artifacts that implement the product. We use F to denote the universe

of features and P to denote the universe of products.

An example for a product would be P1 = ({BASE, LINE, WIPE}, RootNode)
with RootNode|Children = {$Canvas, $Line, $Main}.

Examples of the artifact trees for P1 are shown in Figure 3.2. The tree

representing the class Canvas in product P1 is shown in Figure 3.2a. As an

identifier for classes and fields simply their respective names are used, meth-

ods are identified by their Java signature and statements simply by their

Java source representation. Node $Canvas representing the class Canvas is

an unordered node with node $wipe() representing a method and $lines

representing a field as children. Node $wipe() is an ordered node. Its chil-

dren represent statements (e.g. $lines.clear()) and their order matters.

The artifact in node $lines.clear() references the artifact in node $lines

as it represents a statement accessing that field. This is denoted by a dashed

arrow. The tree for class Main in product P1 is shown in Figure 3.2c. It con-

tains a field toolPanel and a method initContentPane, which again is an

ordered node that contains two statements toolPanel.add(lineButton);

and toolPanel.add(wipeButton). And lastly Figure 3.2b shows the tree

representing the code for class Line. It has as a child only its constructor

which is just a method identified by its signature, meaning only the types

and order of its parameters are taken into account and not their names. The

actual parameters, including the names, are then just treated like statements

that precede all the actual statements.

The source code for the remaining two products P2 and P3 is shown in

Figures 3.3 and 3.4.

Note that when we use the operator = for artifacts and sequence graphs

we assume reference semantics, i.e. = sets or compares the reference and

does not copy or compare the contents. This is the same semantic as in Java

when assigning or comparing objects.

We define the following operations that exist for sets also for artifact

trees:

15

Canvas [Class]

$Canvas ∈ P1|RootNode

wipe() [Method] lines [Field]

this.lines.clear(); [Statement]

(a) Class Canvas

Line [Class]

$Line ∈ P1|RootNode

Line(Point) [Method]

Point start [Parameter]

(b) Class Line

Main [Class]

$Main ∈ P1|Nodes

initContentPane() [Method] toolPanel [Field]

toolPanel.add(lineButton); toolPanel.add(wipeButton);

(c) Class Main

Figure 3.2: Artifact Trees for Product P1

Definition 5 To express that a node N is contained in an artifact tree with

root node Root we write N ∈ Root.
N ∈ Root⇔ N = Root ∨ (∃n ∈ Root|Children : N ∈ n).

Definition 6 To express that a node N1 is a subset of another Node N2 we

write N1 ⊆ N2.

N1 ⊆ N2 ⇔ N1 ≡ N2 ∧ (N1|Type ⇒ N2|Type) ∧ ∀n1 ∈ N1|Children : ∃n2 ∈
N2|Children : n1 ≡ n2 ∧ n1 ⊆ n2.

Definition 7 The cardinality |N | of a node N is the number of solid nodes

contained in the artifact tree of which N is the root.

|N | = N |Type +
∑

n∈N |Children

|n|.

16 CHAPTER 3. BASICS AND EXAMPLE

1 class Canvas {

2 List <Line > lines;

3 void setColor(String c){...}

4 ...

5 }

6 class Line {

7 Line(Color c, Point start){...}

8 ...

9 }

10 class Main extends JFrame{

11 initContentPane () {

12 toolPanel.add(lineButton);

13 toolPanel.add(colorsPanel);

14 } ...

15 }

Figure 3.3: Source Code Snippets for Product P2 (BASE, LINE, COLOR)

For example the cardinality |N1| of node N1 in Figure 3.5a is 4 since all 4

nodes are solid. We depict solid nodes with a solid box and weak nodes with

a dotted box.

Definition 8 The full cardinality ‖N‖ is the number of nodes contained in

the artifact tree of which N is the root, regardless whether these nodes are

weak or solid.

‖N‖ = 1 +
∑

n∈N |Children

‖n‖.

The full cardinality ‖N3‖ of node N3 in Figure 3.5c is 3 because the artifact

tree of which N3 is the root consists of 1 weak and 2 solid nodes.

Definition 9 The intersection N = N1 ∩ N2 of two nodes N1 and N2 has

similar semantics as for sets and is defined as follows:

The nodes must be equivalent, sequence graphs must match and they must

either all be ordered or all unordered: N1 ≡ N2 ∧N |Ordered = N1|Ordered =

N2|Ordered ∧N |SequenceGraph = N1|SequenceGraph = N2|SequenceGraph

N references the same artifact as N1: N |Artifact = N1|Artifact.

For N to be solid both N1 and N2 must be solid: N |Type = N1|Type ∧
N2|Type.

Children of N must have an equivalent node among both N1’s children

and N2’s children and must either be solid themselves or contain at least

17

1 class Canvas {

2 List <Line > lines;

3 List <Rectangle > rects;

4 void setColor(String c){...}

5 ...

6 }

7 class Line {

8 Line(Color c, Point start){...}

9 ...

10 }

11 class Rect {

12 Rect(Color c, int x, int y){...}

13 ...

14 }

15 class Main extends JFrame{

16 initContentPane () {

17 toolPanel.add(lineButton);

18 toolPanel.add(rectButton);

19 toolPanel.add(colorsPanel);

20 } ...

21 }

Figure 3.4: Source Code Snippets for Product P3 (BASE, LINE, RECT, COLOR)

one solid descendant: n ∈ N |Children ⇔ ∃n1 ∈ N1|Children, n2 ∈ N2|Children :

n1 ≡ n2 ∧ n = n1 ∩ n2 ∧ (n|Type = 1 ∨ |n|Children| > 0).

The intersection of the $Canvas node N1 of product P1 and the $Canvas

node N2 of product P2 is shown in Figure 3.5e. The two trees have their

root node $Canvas in common and the child node $lines, therefore the tree

resulting from the intersection contains exactly these two nodes, and both

are solid since they were both solid in each of the two intersected trees.

Definition 10 The union N = N1∪N2 of two nodes N1 and N2 has similar

semantics as for sets and is defined as follows:

The nodes must be equivalent, sequence graphs must match and they must

either all be ordered or all unordered: N1 ≡ N2 ∧N |Ordered = N1|Ordered =

N2|Ordered ∧N |SequenceGraph = N1|SequenceGraph = N2|SequenceGraph

N references the same artifact as N1: N |Artifact = N1|Artifact.

For N to be solid at least one of N1 or N2 must be solid:

N |Type = N1|Type ∨N2|Type.

For every child of N one of the following conditions must hold:

n ∈ N |Children ⇔

18 CHAPTER 3. BASICS AND EXAMPLE

∃n1 ∈ N1|Children : (@n2 ∈ N2|Children : n1 ≡ n2) ∧ n = n1

∨ ∃n2 ∈ N2|Children : (@n1 ∈ N1|Children : n1 ≡ n2) ∧ n = n2

∨ ∃n1 ∈ N1|Children, n2 ∈ N2|Children : (n1 ≡ n2 ∧ n = n1 ∪ n2)

The union N6 of the two trees N3 = N1 \ N2 (Figure 3.5c) and N4 =

N2 \ N1 (Figure 3.5d) is shown in Figure 3.5f. N6 contains all the nodes

from N3 and N4. If a node is weak in both N3 and N4 it is also weak

in N6, if it appeared solid in any of the two in will be solid in N6. Node

$Canvas remains weak as it was weak in both N3 and N4. The descendants

of $Canvas from N3 and N4 all appear solid in the union as they are all solid

in any of N3 or N4.

Definition 11 The minus operation N = N1 \N2 of two nodes N1 and N2

has similar semantics as for sets and is defined as follows:

The nodes must be equivalent, sequence graphs must match and they must

either all be ordered or all unordered: N1 ≡ N2 ∧N |Ordered = N1|Ordered =

N2|Ordered ∧N |SequenceGraph = N1|SequenceGraph = N2|SequenceGraph

N references the same artifact as N1: N |Artifact = N1|Artifact.

For N to be solid N1 must be solid and N2 must be weak:

N |Type = N1|Type ∧ ¬N2|Type.

For children of N the following must hold:

n ∈ N |Children ⇔

∃n1 ∈ N1|Children : (@n2 ∈ N2|Children : n1 ≡ n2) ∧ n = n1

∨ ∃n1 ∈ N1|Children, n2 ∈ N2|Children : n1 ≡ n2 ∧ n = n1 \ n2 ∧ (n|Type =

1 ∨ |n|Children| > 0)

The minus operation N3 = N1 \ N2 is shown in Figure 3.5c. Any solid

node in N2 that also appears solid in N1 appears weak in N3 in case it has

a solid decendant in N3 or it does not appear at all. Node $wipe() appears

solid in N1 and not in N2 which is why it is solid in N3. $Canvas is solid

in both N1 and N2 and since it has solid descendants ($wipe()) it appears

weak in N3. Node $line is solid in both and since it does not have any

children does not appear in N3 at all.

19

Canvas

N1 = $Canvas ∈ P1|RootNode

wipe() lines

lines.clear()

(a)

Canvas

N2 = $Canvas ∈ P2|RootNode

setColor() lines

(b)

Canvas

N3 = N1 \N2

wipe()

lines.clear()

(c)

Canvas

N4 = N2 \N1

setColor()

(d)

Canvas

N5 = N1 ∩N2

lines

(e)

Canvas

N6 = (N1 \N2) ∪ (N2 \N1) = N3 ∪N4

wipe()

lines.clear()

setColor()

(f)

Figure 3.5: Minus (c)(d), Intersection (e) and Union (f) operations between
$Canvas Nodes of Product P1 (a) and Product P2 (b)

20 CHAPTER 3. BASICS AND EXAMPLE

Chapter 4

Extraction

This chapter describes the extraction of information out of sets of related

product variants. Mainly two types of information are extracted:

• Traceability: mappings between modules and their implementing ar-

tifacts.

• Dependencies: dependencies between traces which represent a simple

form of variability model.

These two steps are described in the following sections. The extraction

process is incremental, meaning it can start out with just one single product

variant and be refined any time with additional product variants as soon as

they become available.

Usually traceability information is extracted as a mapping between sin-

gle features and their implementing artifacts. However, it does not suffice

to just consider single features when deciding what artifacts are required to

implement a product, because also the interactions of features require arti-

facts to implement them. Meaning, whether certain artifacts are required

for implementing a product variant can also depend on certain combinations

of features being present. Furthermore, when the implementing artifacts are

source code then the granularity at which traceability is extracted is com-

monly on the level of classes or methods, neither is sufficient for our purpose

though. This level of granularity is too coarse. A lot of variability occurs

at the level of statements. And with that comes the additional challenge

that for statements the question is not only whether they are required for

the implementation of a feature (or a feature interaction) but also in what

22 CHAPTER 4. EXTRACTION

order they should be included. A certain combination of features could for

example be reflected in the implementation by simply changing the order of

already existing artifacts. So the traceability information we aim to extract

does no longer just include the presence or absence of artifacts but also their

ordering.

The traceability extraction therefore has two problems to solve:

• Traceability: determining whether an artifact traces to a module or

not.

• Ordering: determining what the order relations between children of

ordered nodes are.

4.1 Traceability

To express whether artifacts implement a single feature or an interaction

between features we introduce modules that are inspired by a variation of

Feature Algebra from Liu et al. [Liu et al., 2006]. A detailed description is

presented in [Linsbauer et al., 2013]

There are two kinds of modules: base modules and derivative modules.

Modules are simply sets of features.

Definition 12 A base module represents artifacts that are responsible for

the implementation of a single feature and that are present in every product

that implements this feature, independently of any other features. We denote

a base module with the feature’s name in lowercase. A base module b of a

feature B is represented as the set b = {B} only containing the feature B.

The base module for feature LINE would for example be line and it would,

among others, map to the field lines of class Canvas (shown in Figure 3.1

in Line 2) corresponding to Node $lines in Figure 3.2a. This field is present

in every product that has feature LINE selected.

Definition 13 A derivative module or simply derivative, denoted as

δn(F0, F1, ..., Fn), represents artifacts that implement feature interactions,

where Fi is F ∈ F if feature F is selected or ¬F if F is not selected, and

n is the order of the derivative. A derivative module of order n represents

the interaction of n + 1 features. A derivative module d = δn(F0, F1, ..., Fn)

4.1. TRACEABILITY 23

is represented as the set containing all the interacting features, i.e. d =

{F0, F1, ..., Fn}.

The derivative module representing the interaction of features LINE and

WIPE would for example be δ1(line, wipe) of order 1. It would map to

the statement this.lines.clear(); as shown in Figure 3.2a in Line 4

corresponding to Node $this.lines.clear(); in Figure 3.2a.

Modules can only add artifacts. To model the removal of artifacts we

allow negative features in derivatives. A negative feature ¬F is used to ex-

press that feature F must not be selected in a product to include certain

artifacts. An example would be δ1(line,¬color) which represents the arti-

facts that should occur in a product if feature LINE is selected while feature

COLOR is deselected (i.e. negative). It represents the feature interaction

between LINE and ¬COLOR. The corresponding artifacts would be the con-

structor Line(Point start) {...} in Line 9 of Figure 3.1 represented by

node $Line(Point) in Figure 3.2b.

We use M to denote the universe of modules.

To describe the mappings between modules and artifacts we introduce

associations.

Definition 14 Given a universe of associations AS an association AS ∈ AS
is a 5-tuple (Modules, Max, All, Not, RootNode) where Modules ∈ M, Max ∈
M, All ∈ M and Not ∈ M are sets of modules and RootNode =

(−1, ε, ϑ, Children, 0,−) is the root of the tree containing the relevant arti-

facts. An association maps modules to artifacts. Alternatively we say that

these modules trace to these artifacts.

We say that an artifact is contained in an association if its containing

node is part of the association’s artifact tree.

In [Linsbauer et al., 2013] we found that not all artifacts have a unique

trace, i.e. they can trace to multiple disjunctive modules. For example

an artifact that traces to module line or module rect is included in any

product that contains either of these modules. This means that products

can have artifacts in common even though they do not have any features

in common. For this purpose, in addition to the ordinary set of modules

Modules as it was already presented in [Linsbauer et al., 2013], there are

now three additional sets of modules in an association: Max, All and Not.

24 CHAPTER 4. EXTRACTION

Assume a given set of products P ⊆ P and an already extracted associ-

ation AS ∈ AS.

• Modules: the set of modules that all products that contain the corre-

sponding artifacts have in common. This is based on the assumption

that artifacts that products have in common trace to the modules these

products have in common. However, this is only true for artifacts that

have a unique trace, i.e. trace to only one module. For artifacts with

a non-unique trace this set will be the empty set. The artifacts in AS

could trace to exactly one module m ∈ AS|Modules.

AS|Modules = {m | ∀p ∈ P : AS|RootNode ⊆ P |RootNode ⇒ m ∈
FeaturesToModules(P |Features)}.

• All: the set containing all modules of all products that contain the

corresponding artifacts. This set contains all modules that the corre-

sponding artifacts have ever been associated with in any of the prod-

ucts.

AS|All = {m | ∃p ∈ P : m ∈ featuresToModules(P |Features) ∧
AS|RootNode ⊆ P |RootNode}.

• Not: the set containing all modules of all products that do not contain

the corresponding artifacts. The artifacts in AS do not trace to any

module m ∈ AS|Not.

AS|Not = {m | ∃p ∈ P : m ∈ featuresToModules(P |Features) ∧
AS|RootNode 6⊆ P |RootNode}.

• Max: this set simply contains all modules in All that are not also in

Not, i.e. the modules that the corresponding artifacts can at most

trace to. The artifacts in AS could potentially trace to any set of

modules M ⊆ AS|Max.

AS|Max = AS|All \AS|Not.

To work with modules we need to be able to negate sets of features,

compute a set of modules out of a set of features and update module sets

with new features. This is done using the functions shown below. Assume

a set of selected (i.e. positive) features F ⊆ F and a set Fall of all currently

known features in a domain with F ⊆ Fall.

4.1. TRACEABILITY 25

Definition 15 negateFeatures : 2F 7→ 2{¬f |f∈F} is a function that com-

putes for a set of features the set with the same features negated.

F̄ = negateFeatures(F) = {¬f | f ∈ F}

Definition 16 featuresToModules : 2F×2negateFeatures(F) 7→ 2M computes

from a given set of selected (i.e. positive) features and a set of unselected

(i.e. negative) features the corresponding set of modules that can be formed.

M = featuresToModules(F, F̄) = {p ∪ n | p ∈ 2F \ ∅ ∧ n ∈ 2F̄ }

with F̄ = negateFeatures(Fall \ F).

Definition 17 updateModules : 2M× 2negateFeatures(F) 7→ 2M updates a set

of modules with a set of negative features that were previously unknown in

the domain and hence not contained in the modules.

M ′ = updateModules(M, F̄) = {m ∪ n | m ∈M ∧ n ∈ 2F̄ }

with F̄ = negateFeatures(Fall \ F).

The algorithm for extracting associations (i.e. traceability) from a prod-

uct P , a set of all currently known features in a domain F and an already

existing set of associations AS from already processed products is shown in

Algorithm 4.1. It is based on [Linsbauer et al., 2013]. Details and optimiza-

tions like not adding empty associations or merging associations that do not

contain any artifacts are omitted for simplicity.

For every input product p ∈ P first its corresponding initial association

is computed in Line 9. In case the product introduced new features to the

domain the existing associations a ∈ AS as well as the set of features F are

updated in Lines 11-20.

In Line 24 all the ordered nodes in the new association anew are aligned

(i.e. their sequence numbers are updated) to the respective nodes con-

tained in the already existing associations and their sequence graphs are

updated to incorporate new information about ordering. The function

alignAndSequenceTree : AN × AN 7→ AN is responsible for taking care

of the ordering of children of ordered nodes. It will be explained in the

following section.

26 CHAPTER 4. EXTRACTION

Algorithm 4.1 Traceability Extraction Algorithm

1 Input: A set of Products (P),

2 A set of features (F),

3 A set of associations (AS)

4 Output: A List of refined associations assocs ,

5 The updated set of features.

6

7 for p in P begin

8 {Compute initial association for Product p}
9 anew := (featuresToModules(p|Features, F \ p|Features), p|RootNode)

10

11 {Update Associations in case of new features}

12 if p|Features 6⊆ F then

13 for a in AS begin

14 AS|Modules := updateModules(AS, p|Features \ F)
15 AS|All := updateModules(AS, negateFeatures(p|Features \ F)
16 AS|Not := updateModules(AS, p|Features \ F)
17 AS|Max := updateModules(AS, p|Features \ F)
18 endfor

19 F := F ∪ p|Features

20 endif

21

22 {Align and Sequence anew to the associations AS}

23 for a in AS begin

24 alignAndSequenceTree(a|RootNode, anew|RootNode)
25 endfor

26

27 {Refine AS using the association anew}
28 assocs := ∅
29 for a in AS begin

30 (al, aint, ar) := compare(a, anew)
31 anew := ar
32 assocs := assocs ∪ {al, aint}
33 endfor

34 assocs := assocs ∪ {anew}
35 AS = assocs
36 endfor

37 return AS , F

The algorithm then performs comparisons between associations’ mod-

ule sets and artifact trees in Lines 29-33. For that it uses the function

compare : AS × AS 7→ AS × AS × AS which gets as input an already pro-

cessed association A and a new association Anew. It performs comparisons

for the two associations’ module sets and artifact trees as follows:

4.1. TRACEABILITY 27

Definition 18 (Al, Aint, Ar) = compare(A,Anew)⇔
The artifact trees are compared in terms of common and unique artifacts:

• Aint|RootNode = A|RootNode ∩Anew|RootNode

• Al|RootNode = A|RootNode \Aint|RootNode

• Ar|RootNode = Anew|RootNode \Aint|RootNode

Modules are compared in the exact same way. Common artifacts trace to

common modules. Artifacts that are unique to an association trace to mod-

ules that are unique to that association.

• Aint|Modules = A|Modules ∩Anew|Modules

• Al|Modules = A|Modules \Aint|Modules

• Ar|Modules = Anew|Modules \Aint|Modules

Common artifacts were in contact with all modules that A and Anew were

ever in contact with. Nothing new about modules these artifacts do not trace

to can be derived.

• Aint|All = A|All ∪Anew|All

• Aint|Not = A|Not

Artifacts that are not common do not trace to any of the modules the re-

spective other association has ever been in contact with:

• Al|Not = A|Not ∪Anew|All

• Ar|Not = Anew|Not ∪A|All

The maximal set of modules that artifacts can trace to are computed:

• Al|Max = Al|All \Al|Not

• Aint|Max = Aint|All \Aint|Not

• Ar|Max = Ar|All \Ar|Not

28 CHAPTER 4. EXTRACTION

Al|Modules Ar|Modules

base,
δ1(base,
line),
line

wipe,
δ1(base, wipe),
δ1(line, wipe),
. . .

rect, color,
δ1(rect, color),

. . . ,
δ1(line,¬color),

. . .

Aint|Modules

Figure 4.1: Comparison of Modules of Association A1 and Association A3

The necessary operations (i.e. intersection and minus operation) have

been defined for artifact trees in Chapter 3 along with examples. For mod-

ules this are simple set operations. The comparison of A1|Modules with A1

being the initial association for product P1 and A3|Modules with A3 being

the initial association for P3 is shown in Figure 4.1.

After the trace extraction every node appears solid exactly in one of

the associations and may appear weak in any of the other associations as

parents for solid descendants. This means that every node (and therefore

its contained artifact) are part of exactly one association. Note that an

association can represent traces to multiple modules in case of a non-unique

trace.

4.2 Ordering

Before ordered nodes (i.e. nodes N with N |Ordered = 1) can be compared

their sequence graphs first have to be aligned to each other and then their

sequence graphs have to be properly updated according to the computed

alignment. In an ordered node every child node has a sequence number that

is unique in the corresponding sequence graph. The corresponding node’s

sequence graph represents a partial order over these sequence numbers.

Definition 19 A sequence graph SG is a 3-tuple (Sequenced, IDs,Order).

Sequenced ∈ {0, 1} tells whether the sequence graph has already been aligned

with another one. IDs is a function N 7→ A that maps sequence numbers to

artifacts. Every sequence number in the sequence graph has exactly one entry

4.2. ORDERING 29

in IDs. Order is a non-strict partial order over a set of sequence numbers

S = {id | ∃(id, a) ∈ SG|IDs} ⊆ N and therefore satisfies the following

conditions:

• Reflexive: ∀a ∈ S : (a, a) ∈ SG

• Antisymmetric: ∀a, b ∈ S : (a, b) ∈ SG ∧ (b, a) ∈ SG⇒ a = b

• Transitive: ∀a, b, c ∈ S : (a, b) ∈ SG ∧ (b, c) ∈ SG⇒ (a, c) ∈ SG

Definition 20 An alignment maps sequence numbers of one ordered node’s

sequence graph N2|SequenceGraph to sequence numbers of another node’s se-

quence graph N1|SequenceGraph. An alignment a = align(N1, N2) for two

ordered nodes N1 and N2 must fulfill the following conditions:

• A sequence number in N2 may map to another sequence number

in N1 only if they represent the same artifact. ∀(id1, art1) ∈
N1|SequenceGraph|IDs, (id2, art2) ∈ N2|SequenceGraph|IDs : a(id2) =

id1 ⇒ art2 ≡ art1

• The two sequence graphs must not contradict each other after

the alignment. ∀(x, y) ∈ N2|SequenceGraph|Order : (a(x), a(y)) 6∈
N1|SequenceGraph|Order

• For every sequence number there must be at most one mapping in a

and no two sequence numbers may map to the same sequence number.

∀(x, y) ∈ a, (x′, y′) ∈ a : x = x′ ⇔ y = y′

• For every sequence number in N2’s sequence graph there must be ex-

actly one mapping in a. ∀(id, art) ∈ N2|SequenceGraph|IDs : ∃(x, y) ∈
a : x = id

There are many possible alignments that fulfill these conditions. Which

one to choose is determined by a cost function that should be minimized.

Among all the possible alignments one with the lowest cost is chosen. We

use the following cost function:

cost(a,N1) = |{x | ∃(x, y) ∈ a : @(id, art) ∈ N1|SequenceGraph|IDs : y = id}|

This function minimizes the number of new sequence numbers used, i.e. it

maximizes the number of reused sequence numbers from N1. Any other

30 CHAPTER 4. EXTRACTION

cost function can be chosen that for examples considers semantic knowledge

about the kind of artifacts, e.g. in case of artifacts that represent Java

source code the cost function could apply a penalty to alignments according

to which variables would be used before they are initialized.

The function a = alignminCost(N1, N2) ⇔ a = align(N1, N2) ∧ @a′ =

align(N1, N2) : cost(a′, N1) < cost(a,N1) provides such an alignment.

Given such an alignment a = alignminCost(N1, N2) the sequence graphs

of N1 and N2 and the sequence numbers of their child nodes have to be

updated so that they match and the nodes can be compared using the op-

erations defined in the previous Chapter.

Definition 21 To compute the updated sequence graph SG′ the function

sequence is used. It merges the IDs and the Order of two sequence graphs

with respect to the alignment a and sets the sequence graph to Sequenced =

1.

SG′ = sequence(a, SG1, SG2)⇔

• The sequence graph has been sequenced: SG′|Sequenced = 1.

• The IDs from SG1 are used directly and the IDs from SG2 are added

according to the alignment a: SG′|IDs = {(id, art) | (id, art) ∈ SG1|IDs∨
(∃(id′, art) ∈ SG2|IDs : a(id′) = id)}

• The Order is merged just as the IDs are but in addition it also has

to remain transitive: {(x, y) | (x, y) ∈ SG1|Order ∨ (a(x), a(y)) ∈
SG2|Order} ⊆ SG′|Order and ∀x, y, z : (x, y) ∈ SG′|Order ∧ (y, z) ∈
SG′|Order ⇒ (x, z) ∈ SG′|Order.

Example: Consider an ordered node N2 that should be aligned to an-

other ordered node N1. Both nodes contain an artifact #m representing the

same method m but from different product variants, which is why their chil-

dren (i.e. the statements of method m) are different. The statements for N1

and N2 are shown in Figure 4.2a and Figure 4.2b respectively.

N1’s sequence graph looks as follows:

N1|SequenceGraph|Sequenced = 0

N1|SequenceGraph|IDs = {(1, #i++), (2, #j++), (3, #k=i+j)} and

N1|SequenceGraph|Order = {(1, 2), (2, 3), (1, 3)}.

4.2. ORDERING 31

N2’s sequence graph looks like this:

N2|SequenceGraph|Sequenced = 0

N2|SequenceGraph|IDs = {(1, #i++), (2, #j--), (3, #k=i+j)} and

N2|SequenceGraph|Order = {(1, 2), (2, 3), (1, 3)}.

The alignment a = alignminCost(N1, N2) = {(1, 1), (3, 3), (2, 4)} cannot

map 2 to any sequence number ofN1 because @(id, art) inN1|SequenceGraph|IDs :

art = N2|SequenceGraph|IDs(2) and therefore assigns the new sequence num-

ber 4 to it.

The updated sequence graph SG = sequence(a,N1, N2) then looks as

follows:

• It is now sequenced: SG|Sequenced = 1.

• It contains an additional sequence number:

SG|IDs = {(1, #i++), (2, #j++), (3, #k=i+j), (4, #j--}.

• The partial order is updated:

SG|Order = {(1, 2), (2, 3), (1, 3), (1, 4), (4, 3)}.

The new sequence graph SG is shown in Figure 4.2c. The order of

statements j++ and j-- cannot be determined at this point because they

appear in the same place but haven’t appeared together yet.

1 i++;

2 j++;

3 k=i+j;

(a)

1 i++;

2 j--;

3 k=i+j;

(b)

1:i++

2:j++ 4:j--

3:k=i+j

(c)

Figure 4.2: Example Sequence Graph

What the function alignAndSequenceTree then does is it traverses the

artifact trees and updates them by aligning all the matching ordered nodes

to each other. The pseudo code for it is shown in Algorithm 4.2.

32 CHAPTER 4. EXTRACTION

Algorithm 4.2 alignAndSequenceTree

1 Input: Node N1

2 Node N2

3

4 {If nodes are ordered align them}

5 if N1|Ordered = N2|Ordered = 1 then

6 if N2|sequenced = 1 then

7 N1|SequenceGraph := N2|SequenceGraph

8 else

9 a := alignminCost(N1, N2)
10 SG := sequence(a,N1, N2)
11 N1|SequenceGraph := SG
12 N2|SequenceGraph := SG
13 {Update sequence numbers of child nodes of N2}

14 for ninN2|Children begin

15 n|SequenceNumber = a(n|SequenceNumber)
16 endfor

17 endif

18 endif

19

20 {Align and sequence matching child nodes}

21 for n1 ∈ N1|Children begin

22 for n2 ∈ N2|Children begin

23 if n1 ≡ n2 then

24 alignAndSequenceTree(n1, n2)
25 endif

26 endfor

27 endfor

4.3 Dependencies

There are two kinds of dependencies:

• Structural dependencies: a child node requires its parent node to be

present. Without the parent (e.g. the encapsulating class) the child

node (e.g. a method) can not be included.

• Cross-Tree dependencies: an artifact may require another artifact that

is located somewhere else in the tree to be present, e.g. a method call

requires the called method to be present.

We weigh a structural dependency with weight 2 and a cross-tree de-

pendency with weight 1. Based on this we compute dependencies between

associations. A dependency matrix is a quadratic matrix with the rows and

4.4. IDENTIFIERS 33

columns representing associations. In every cell ci,j the weighted sum of all

dependencies of artifacts within association ai to artifacts within association

aj is stored. Cells ci,i represent dependencies between artifacts within an

association. Remember: an artifact is considered to be in an association

(i.e. part of the trace) if its containing node is solid in the corresponding

association’s artifact tree.

As a simple example assume the artifact tree in Figure 3.5c as part of

an association a1 and the artifact tree in Figure 3.5e as part of another

association a2. The weight in cell c1,2 would be 3 because the parent of

$wipe() in a1 is $Canvas in a2 which adds a weight of 2, and $lines.clear()

in a1 accesses $line which also traces to a2 and this adds a weight of 1 to a

total of 3. The weight in cell c2,1 on the other hand would be 0 because no

artifact that is in a2 depends on any artifact in a1. The complete dependency

matrix is shown in Figure 4.3a.

a1 a2

a1 2 3

a2 0 2

(a)

a1 a2
3

2 2

(b)

Figure 4.3: Example Dependency Matrix (a) and corresponding Dependency
Graph (b)

Such a dependency matrix can also be displayed as a dependency graph

as shown in Figure 4.3b. Each node represents an association. The edges

are labeled with their weight which is also reflected in their thickness.

4.4 Identifiers

A node N ∈ AN is identified by its sequence number N |SequenceNumber ∈ N
and its artifact N |Artifact. An artifact A ∈ A is identified by its identifier

A|Identifier. Two artifacts with the same identifier are considered to be

equivalent. Based on this the comparisons of artifact trees are performed.

Currently identifiers are simply based on the names of the objects that the

artifacts represent. E.g. an artifact representing a class in Java simply uses

its name as an identifier as was done with the artifact #Canvas representing

class Canvas in our draw example. This is very simple to implement and

34 CHAPTER 4. EXTRACTION

sufficient if the product variants used as input have not diverged from each

other (i.e. not undergone independent evolutionary changes like bug fixes or

feature changes etc.). However, if product variants have diverged strongly

the extraction will often not be able to match artifacts that in fact should be

matched. Consider for example one draw variant in which the class Canvas

was renamed to Base to reflect the feature’s name BASE that it corresponds

to. Even though these two classes will be almost identical the extraction

will not match them because they have different names.

This section will propose a way to mitigate this problem. It is part of

our future work to implement and evaluate it.

Instead of using identifiers for artifacts based on the names of the ob-

jects these artifacts represent we want to use identifiers based on the actual

similarity of these objects across product variants, e.g. similarity above a

threshold of 90% according to an arbitrary metric (e.g. using some code-

clone detection technique in the case of source code) should be considered

a match. Consider again class Canvas in one draw variant (e.g. P1) and

class Base in another (e.g. a new product P6) and assume they are 95%

equivalent. These two artifacts would then receive the same identifier (e.g.

simply the concatenation of their names: CanvasBase).

However, in order to be able to fully reconstruct all the products again

artifact’s names now have to be stored separately and become a part of the

extraction process, since they now can also trace to modules. This can for

example be achieved by simply treating the object’s name as an artifact

as well and putting it in an additional child node of the original artifact’s

node. Figure 4.4 shows the comparison of the artifact trees of class Canvas

and class Base assuming only the class’ name has changed and they are

considered equivalent.

Of course this same principle can be applied on any level of granularity.

Once two artifact nodes have been matched this same technique could also

be applied to its children. It might for example make sense, once two classes

have been matched, to also apply this technique on their methods to find out

what methods should be matched. Because two methods that are almost

identical would not be matched if only their signature has changed.

Of course the used similarity metric depends on the kind of objects the

artifacts represent. It will be different for source code than it will be for

models or any other artifacts. So every concrete artifact type will have to

4.4. IDENTIFIERS 35

BaseCanvas [Class]

N = ($BaseCanvas ∈ P1|RootNode) ∩ ($BaseCanvas ∈ P6|RootNode)

wipe() [Method] lines [Field]

this.lines.clear(); [Statement]

(a)

BaseCanvas [Class]

($BaseCanvas ∈ P1|RootNode) \N |RootNode

Canvas [Name]

(b)

BaseCanvas [Class]

($BaseCanvas ∈ P6|RootNode) \N |RootNode

Base [Name]

(c)

Figure 4.4: Artifact Tree for Matched Classes Canvas and Base with Iden-
tifier BaseCanvas

provide its own comparison metric.

The difficulty in this will be the incremental usage as later during the

extraction process classes can be split up over several associations and mea-

suring their similarity may require their complete reconstruction which could

cost a lot of runtime. Additionally similarity not only between two but be-

tween an arbitrary number of instances of a class has to be considered. For

example the following case is interesting: two classes A and B (each from

another variant) are 90% equivalent and a third class C (again from another

variant) is 90% equivalent to A but only 80% to B. Do they now receive the

36 CHAPTER 4. EXTRACTION

same identifier or not? In any case the order in which products are added

to the database must not make a difference, meaning that the result in the

end has to be the same for every order in which products are added to the

database as long as the products are the same.

Chapter 5

Composition

The composition uses the previously extracted information to generate prod-

ucts. Based on a set of features that a product should have it selects asso-

ciations and combines their artifacts into a product. This chapter gives a

brief overview about the composition process. More details can be found in

[Fischer, 2013].

The quality of the product of course depends on the quality of the pre-

viously extracted information. When composing a product that was among

the input products for the extraction (i.e. a product with the same set of

features) the information should suffice to perfectly reconstruct it. If, how-

ever, the newly composed product was not among the input products it

may be incomplete. The composition automatically creates an as good as

possible skeleton for the new product given the information it has available.

This skeleton in combination with warnings provided by the composition can

then be used by software engineers to manually complete the new product.

The composition maps a set of positive (i.e. selected) features F , a set

all currently known features Fall and a set of associations AS to a product:

compose : 2F × 2F × 2AS 7→ P.

The initial version of the composed product is computed as follows:

P = compose(F, Fall, AS) = (F,RootNode)

where RootNode =
⋃

assoc∈assocs
assoc|RootNode

with assocs = {assoc | m = featuresToModules(F, negateFeatures(Fall \
F)) ∧ (m ∩ assoc|Modules 6= ∅ ∨ assoc|Modules = ∅ ∧m ∩ assoc|Max 6= ∅)}.

This version can then be automatically refined using the extracted depen-

dency information and its manual completion can be guided using warnings

38 CHAPTER 5. COMPOSITION

as described in the following sections.

5.1 Warnings

A product can either be missing artifacts for modules that do not exist in

the extracted associations because they were not part of any of the input

products or it can contain surplus artifacts if modules could not be sepa-

rated in the extracted associations because they never appeared separately

in any of the input products. Additionally the order for artifacts that never

appeared together might be uncertain. For all these cases the composition

provides the appropriate warnings to guide the user through the manual

completion process of the provided skeleton product.

Assume a set of extracted associations A, a set of positive features

F a composed product should implement and a set of negative features

F̄ it should not implement. The set of modules needed is then M =

featuresToModules(F, F̄).

• Missing modules whose implementing artifacts have to be manually

added. missing(M,A) = {m | m ∈ M ∧ @a ∈ A : m ∈ a|Modules ∨
(a|Modules = ∅ ∧m ∈ a|Max)}

• Surplus modules whose implementing artifacts have to be manually

removed. surplus(M,A) = {m | ∃a ∈ A : M ∩ a|Modules 6= ∅ ∧m ∈
a|Modules ∧m 6∈M}

• Uncertain order of artifacts whose order has to be manu-

ally set. This is the case whenever children n1 and n2

of an ordered node N are put into a product together

whose order is not determined by the sequence graph in N ,

i.e. (n1|SequenceNumber, n2|SequenceNumber) 6∈ N |SequenceGraph|Order ∧
(n2|SequenceNumber, n1|SequenceNumber) 6∈ N |SequenceGraph|Order.

5.2 Dependencies

In addition to the extracted traces the composition can make use of the de-

pendencies between artifacts as well as the extracted dependencies between

associations.

5.3. TOOL 39

The composition has the following options when including an artifact

that references another artifact that is, according to the extracted traces,

not to be included.

• Leave reference unresolved (this option does only apply to Cross-Tree

dependencies).

• Also include referenced artifact (recursively).

• Do not include referencing artifact (recursively).

• Include all artifacts in the same association as the referenced artifact

(recursively).

Using this information the composition can potentially reduce the effort

for manually completing a product.

Example: in the case of surplus warnings originating from an association

A with A|Modules = {δ1(line, wipe), wipe} where only the base module

wipe is needed and the derivative module δ1(line, wipe) is surplus, meaning

another association A2 containg base module line is not included. Those

artifacts in A that reference artifacts in A2 could then not be included in

the composed product under the assumption that these are the artifacts

that are responsible for the implementation of δ1(line, wipe), i.e. for the

interaction of features line and wipe.

In addition the composition can use the extracted dependency informa-

tion to provide a simple variability model (e.g. a simplified form of feature

model) to help a software engineer configure a system instead of just a list

of features. For example composing a draw application without the feature

BASE selected which contains the drawing area would not make any sense,

and that would be reflected in the model.

5.3 Tool

In [Fischer, 2013] a tool was developed making use of the presented ex-

traction framework in the previous chapter and providing the composition

functionality presented in this chapter. It provides a graphical user interface

in the form of an Eclipse plugin. A screenshot is shown in Figure 5.1.

The tool also has the ability to convert Java source code into an Ecore

representation that can later also be converted back to Java source code

40 CHAPTER 5. COMPOSITION

Figure 5.1: Composition Tool Screenshot

again. For the conversion the tool uses JaMoPP [JaMoPP, 2013]. The Ecore

representation of the class Canvas is shown in Figure 5.2. Ecore models are

tree structures that also allow for cross-references, which fits our chosen

artifact trees perfectly.

5.3. TOOL 41

Figure 5.2: Ecore Tree of Class Canvas from Product P1

42 CHAPTER 5. COMPOSITION

Chapter 6

Approach

Based on the previously described Extraction and Composition [Fischer, 2013]

we present an approach for developing and maintaining software product

portfolios (together with [Fischer, 2013]). An overview of the proposed ap-

proach is shown in Figure 6.1. It starts with a set of related Initial Products

1 , which could for instance be the three initial drawing applications used

in our running example. These related products are used as initial input for

the Extraction 2 that is responsible for computing the associations that

map modules to their implementation artifacts as well as determining the

order of artifacts and extracting dependencies between associations. These

extracted associations are stored in a Database 3 . The Composition 4

can then use the information stored in the database to construct a prod-

uct that is specified by the set of features it shall implement. However, it

can not generate the artifacts responsible for the implementation of modules

that have not been present in any of the input products used to build up the

database, and it also can not separate artifacts whose modules have never

appeared separately in any of the input products. Hence, the generated

products can be incomplete. Therefore, in addition to the generated Partial

Product 5 , the approach also provides the software engineer with differ-

ent types of Warnings 5 addressing the problems the product might have.

These warnings guide the software engineer in making additional manual

changes, if necessary, to finish the Completed Product 6 . The completed

product containing all the new information (like e.g. new module implemen-

tations, etc.) can then be used in the next iteration as additional input for

the extraction to improve the quality of the automatically created partial

44 CHAPTER 6. APPROACH

products of future product variants by updating the database.

Initial Products ⊆ P

Extraction

Completed
Product
∈ P

New Partial
Product +
Warnings

Composition

traces
order

dependencies

1

2

3

4

5

6

[init]

[update]

manual
changes

[new]

[reproduce original]

Figure 6.1: Framework Overview

The focus of this thesis is on the Extraction. A simple composition was

implemented that is used for validation and evaluation purposes. A more

sophisticated and advanced tool for the composition that makes use of the

extraction framework presented in this thesis is developed in [Fischer, 2013].

The tool provides a graphical user interface in the form of an Eclipse plugin

and allows for the conversion of Java source code to an Ecore representation.

The idea behind this approach is that software engineers can incremen-

tally develop a product portfolio using the familiar and intuitive clone-and-

own approach but without the problems that come with it in terms of main-

tenance and reuse management. The creation of the product portfolio should

be similar to the clone-and-own principle while the maintenance of product

variants and the reuse management when creating new product variants

6.1. INCREMENTAL WAY OF USE 45

should be similar to single, configurable systems like SPLs.

There are essentially two ways that this approach can be used:

6.1 Incremental Way of Use

Software engineers can just start developing a product variant and add it

to the database. Whenever a new variant is needed the composition can

automatically create the initial skeleton. Reuse of existing implementation

artifacts is then already taken care of. The software engineer can then,

guided by the provided warnings, complete the product and again add it

to the database to refine the extracted information and allow for better

composition of future products. When changing a feature or making a bug

fix this can be done at a central point directly on the database. All affected

product variants (i.e. all those that require the changed module) can then

simply be re-composed. These changes or fixes therefore do not have to be

replicated for every variant.

Using this approach incrementally and consistently during the develop-

ment and maintenance of product variants prevents them from diverging

from each other which makes it easier to extract accurate information out

of them.

6.2 Legacy Recovery

This applies when a company already has a portfolio of product variants

for which it wishes to use this approach. The reason for this could be

to better be able to maintain them and create new variants easier. The

workflow remains unchanged. However, the extracted information may not

be as accurate due to evolutionary changes in the product variants that may

have diverged from each other over time. Therefore either a refactoring of

the product variants before they are added to the database or a refactoring

of the extracted informatin in the database after having added the legacy

product variants should be performed. Therefore the upfront investment for

recovering legacy variants is higher.

However, it might also make sense to do this for product variants of an

SPL or any other single system representation of product variants. For ex-

ample when new product variants are needed that an SPL was not designed

46 CHAPTER 6. APPROACH

for then the SPL could be transitioned to our approach by using its vari-

ants as input for the extraction. The new variants could then be composed

using the composition. In such a scenario the problem of diverged product

variants would not apply, because in an SPL this does not happen.

Chapter 7

Implementation

This chapter provides insight into the implementation of the extraction

framework as a Java library. It is useful when intending to use the frame-

work directly and for understanding the details of its internal workings. It

can serve as a documentation and a handbook for the library.

The general structure of the framework is shown in Figure 7.1. The

core is the database. Adding a product takes care of adding the features

and converting it to an association. Alternatively it is also possible to add

features and associations to the database directly. A database contains a

set of associations (i.e. the already extracted traces) and a set of currently

known features. Additionally the database provides statistics like runtime,

number of added products and number of artifacts among others.

7.1 Features and Modules

Also shown in Figure 7.1 is the way features and modules are implemented.

A Feature is identified by its name, which is simply a Java String, that

is used in equals and hashCode as an identifier. A Negative Feature

inherits from Feature. A Module is then simply a set of features. As an

implementation for sets we use the HashSet implementation from the Java

class library. When checking if a feature is contained in a module it is

a simple set operation. When comparing two modules then all contained

features must match, which means the features’ names must match. This

results in a lot of set operations and a lot of string comparisons.

48 CHAPTER 7. IMPLEMENTATION

Database

+associations: List<Association>

+features: FeatureSet

+addProduct(Product)

+addAssociation(Association)

+addFeature(Feature)

+addFeatures(FeatureSet)

+getStatistics(): Statistics

+getAssociations(): List<Association>

+getFeatures(): FeatureSet

Association

+root: RootNode

+getRoot(): RootNode

+getModules(): ModuleSet

+getAllModules(): ModuleSet

+getNotModules(): ModuleSet

+getMaxModules(): ModuleSet

Feature

+getName(): String

+getDescription(): String

+toString(): String

+hashCode(): int

+equals(Object): boolean

NegativeFeature

Module

+order(): int

Set<Feature>

1

*

FeatureSet

1 *

1

1

ModuleSet

+featuresToModules(pos:FeatureSet,neg:FeatureSet): ModuleSet

+updateModules(m:Modules,neg:FeatureSet): ModuleSet

Set<Module>

1

4

1*

Figure 7.1: UML Class Diagram for Database, Association, Model and Fea-
ture

Alternative Implementation

This subsection briefly describes an alternative and not so straight forward

implementation, optimized for speed and memory consumption, that is not

yet included in the framework.

Every feature fi is not represented as a string anymore but as the number

i with 0 ≤ i < n. The negative version of this features is represented as

−i. A module m is then comprised of two n-bit numbers pos and neg:

m = (pos, neg). If a feature fi is part of module m then the bit i in m|pos is

1, otherwise it is 0. If the negative version of a feature fi is part of m then

7.2. NODES AND ARTIFACTS 49

bit i in m|neg is 1, otherwise it is 0.

Feature fi can then simply be added to m using bit operations. In Java:

m.pos = m.pos | (1 << i) for positive features (similarly for negative fea-

tures).

When checking if a positive feature fi is contained in a module

the following bit operations suffice: (m.pos & (1 << i)) == (1 << i).

Note that this does not have to be done separately for every

feature, instead all desired features can be added to a module

features and it can be checked whether features is a subset of m:

(m.pos & features.pos) == features.pos. Alternatively, when com-

posing a product with this set of features it can be checked whether mod-

ule m should be included: (m.pos & features.pos) == m.pos. The same

thing has to be done for the negative features.

Comparing two modules m1 and m2 now only involves the comparison

of two n-bit numbers instead of set operations and string comparisons.

7.2 Nodes and Artifacts

The artifact and node structure is shown in Figure 7.2. The abstract base

class artifact provides the general data structures for every artifact. We

implemented two concrete kinds of artifacts:

• EcoreArtifact for Ecore models that can represent anything from

UML diagrams to Java source code, and

• JavaStringArtifact which represents Java source code simply as

Strings representing for example statements or method signatures.

The abstract base class Node again contains all the general data struc-

tures needed for nodes. There are three kinds of nodes:

• A RootNode is used as the root node for associations. It does not

represent any implementation artifacts.

• An UnorderedNode is a simple unordered node without special func-

tionality.

• An OrderedNode overwrites some of Nodes methods that first perform

some operations before calling the inherited super method. For exam-

ple for an intersection first the alignment and sequencing is performed.

50 CHAPTER 7. IMPLEMENTATION

Product

+setFeatures(FeatureSet)

+getFeatures(): FeatureSet

+setNodes(HashSet<Node>)

+getNodes(): HashSet<Node>

Artifact

+getParent(): Artifact

+getUses(): List<Artifact>

+setUses(): List<Artifact>

+getUsedBy(): List<Artifact>

+setUsedBy(List<Artifact>)

+getContainingNode(): Node

+setContainingNode(Node)

+getIdentifier(): String

+getType(): String

+getObject(): Object

+toString(): String

+hashCode(): int

+equals(Object): boolean

EcoreArtifact

JavaStringArtifact

Node

-artifact: Artifact

+isSolid(): boolean

+traverse(Traversal)

+intersect(Node): Node

+updateReferencesAndSequence(boolean): int

+isAtomic(): boolean

+getChildren(): Set<Node>

+addChild(Node)

+getArtifact(): Artifact

+getSequenceNumber(): int

+setSequenceNumber(int)

+getParent(): Node

+setParent(Parent)

+hashCode(): int

+equals(Object): boolean

OrderedNode

-sequenceGraph: SequenceGraph

+traverse(Traversal)

+addChild(Node)

+intersect(Node): Node

+updateReferencesAndSequence(boolean): int

+getSequenceGraph(): SequenceGraph

UnorderedNode

RootNode

SequenceGraph

+sequence(OrderedNode)

+align(OrderedNode): int[]

*1

*

1

1

*

Figure 7.2: UML Class Diagram for Product, Artifact and Nodes

Note that all matching ordered nodes in the database (i.e. ordered nodes

with the same sequence number, artifact and position in the artifact tree)

have a reference to the same sequence graph and the same artifact, and this

sequence graph and this artifact are referenced only by those nodes. Among

7.3. SEQUENCE GRAPH 51

such matching nodes exactly one is solid, all the others are weak. The

extraction takes care that all the references between artifacts are always

resolved correctly during the intersection and kept consistent within the

database. This is important because for example during an intersection of

two nodes, one already contained in the database and the other part of a

new input product that is currently in the process of being added, only one

artifact reference is kept, the other one is discarded.

7.3 Sequence Graph

The sequence graph is implemented as a directed acyclic graph structure

where the edges (transitions) are labeled with sequence numbers. There

is always exactly one root node and one leaf node. Every path from the

root to the leaf represents a possible ordering. This implementation differs

from the presented theory in Chapter 4. There the sequence graph was

represented as a partial order relation. The order relation became larger

the fewer ordering options there were. In an ideal case where an order for n

artifacts is perfectly determined this would result in n∗(n−1)/2 entries. The

provided implementation instead shrinks the fewer ordering options there

are for artifacts. The chosen representation for sequence graphs resembles

Labelled Transition Systems (LTS). The merging of two sequence graphs is

therefore performed similarly to the Parallel Composition of LTS. Figure 7.3

shows an example. The sequence graph SG2 (see Figure 7.3b) was aligned

to sequence graph SG1 (see Figure 7.3a) and the resulting sequence graph

after merging these two is shown in Figure 7.3c. The order of statements

with sequence numbers 2 and 7 is not determined. Therefore paths for both

options exist in the graph.

Alternative Implementation

An alternative implementation could combine benefits of both the partial

order relation and the graph representation by representing the order rela-

tion as a graph as shown in Chapter 4 in Figure 4.2c. The size of the graph

would then be independent of the number of allowed ordering options. The

difficulty might then be the merging step of two such partial order graphs.

52 CHAPTER 7. IMPLEMENTATION

SG1

1: int a;

2: a = 0;

3: a++;

4: write(a);

5: a++;

6: write(a);

(a)

SG2 aligned
to SG1

1: int a;

7: a = 1;

3: a++;

4: write(a);

5: a++;

6: write(a);

8: write(a+1);

(b)

resulting
sequence graph

1: int a;

2: a = 0; 7: a = 1;

7: a = 1; 2: a = 0;

3: a++;

4: write(a);

5: a++;

6: write(a);

8: write(a+1);

(c)

Figure 7.3: Sequencing of Ordered Artifacts

7.4 Traversals

Any additional functionality that is not inherent to the extraction frame-

work is implemented in independent traversals. The base class Traversal

provides basic functionality that is common to every traversal, like travers-

ing a single Node, a complete Product or a full Database. Traversals can be

used for implementing custom operations on the database and for extending

the framework’s functionality.

An overview about the currently implemented traversals is shown in

Figure 7.4. They are described in more detail below.

• MergeTreesTraversal: Merges all artifact trees contained in a set of

associations that are needed for composing a product with a given set

of features.

• CheckConsistencyTraversal: Checks the database for consistency. For

example a node N ’s parent must contain N as a child, or if an artifact

A uses an artifact A′ then A′ must be used by A.

7.4. TRAVERSALS 53

Traversal

+traverseDatabase(Database)

+traverseProduct(Product)

+traverseNode(Node)

+setAssociation(Association)

+prefix(Node)

+postfix(Node)

MergeTreesTraversal

+setFeatures(FeatureSet)

+setModules(ModuleSet)

+traverseDatabase(Database)

CheckConsistencyTraversal

StatisticsTraversal

+reset()

+setAssociation(Association)

+getMaxOrder(): int

+getNumModulesWithOrder(): int[]

+getNumArtifacts(): int

+getNumArtifactsWithType(): Map<String, Integer>

ComputeDependenciesTraversal

+setAssociation(Association)

+resetDependencyMap()

+getDependencyMap(): Map<Association, Map<Association,

 Integer>>

ValidationTraversal

+reset()

+getSurplus(): int

+getMissing(): int

+getOrderErrors(): int

PrintArtifactsTraversal

Figure 7.4: UML Class Diagram for Traversals

• StatisticsTraversal: Computes a number of metrics, for example the

number of artifacts, the number of modules, etc.

• ComputeDependenciesTraversal: Computes the dependency graph for

the current state of the database.

• ValidationTraversal: Compares an artifact tree with a reference arti-

fact tree and computes the number of missing and surplus artifacts

and the number of wrong orderings.

• PrintArtifactsTraversal: Simply prints an artifact tree to the console.

54 CHAPTER 7. IMPLEMENTATION

7.5 Parsers

A parser reads arbitrary objects and outputs an artifact tree to be used with

our approach. Parsers for two kinds of objects are currently implemented:

7.5.1 Java Parser

The Java parser uses the Java Compiler API [JCAPI, 2013] to parse Java

source code files and generates an artifact tree consisting of simple Java

String artifacts. It does not extract dependencies between artifacts.

There are three types of this parser:

• Methods and Fields: Only creates artifact trees down to the level of

methods and fields. This was used to compare the results with our

previous work in [Linsbauer et al., 2013].

• Statements: Creates an artifact tree down to statement level whereas

blocks (e.g. while-loops, for-loops, etc.) are treated as ordered nodes

with the contained statements being their child nodes. This parser was

used in the evaluation when computing the extraction and composition

metrics (see next Chapter 8).

• Flat Statements: Also creates an artifact tree down to statement level

but does not treat blocks as ordered nodes. Blocks do not have child

nodes, instead they are simply followed by the nodes representing their

contained statements.

7.5.2 Ecore Parser

This parser is used to parse Ecore models that adhere to the Java metamodel

provided by [JaMoPP, 2013]. It creates an artifact tree that goes even below

the level of statements. Statements are also broken up into their bits and

pieces. For example every parameter of a method call is represented by

a separate node. This parser extracts dependencies between artifacts and

therefore was used when computing dependency graphs (see next Chapter 8).

Chapter 8

Evaluation

This section evaluates the proposed approach using 4 different case studies.

First the case studies are introduced, then the extracted dependency graphs

are shown and the metrics for the extraction followed by metrics for the

composition are explained including the results for each of the case studies.

The chapter concludes with a short analysis of the results.

8.1 Case Studies

The evaluation was performed using 4 case studies. An overview is shown

in Table 8.1. The following subsections explain them in detail. All of these

case studies are implemented in Java.

Case-Study #F #P LoC #Art

Draw 5 12 287 - 473 491

VOD 11 32 4.7K - 5.2K 5.5K+

ArgoUML 11 256 264K - 344K 192K+

ModelAnalyzer 13 5 35K - 59K 94K+
#F: Number of Features, #P: Number of Products, LoC: Range of Lines

of Code, #Art: Number of Distinct Artifacts

Table 8.1: Case Studies Overview

The first three case studies, due to the fact that their product variants

were generated from SPLs, represent quite ideal cases without any evolution-

ary changes where the product variants have not diverged from each other

at all. This is also what would be expected when the presented approach is

56 CHAPTER 8. EVALUATION

used incrementally from the very beginning or when the variants have been

maintained exceptionally well.

The last case study ModelAnalyzer on the other hand represents the

practical worst case scenario. Its variants have been developed indepen-

dently from each other by different engineers over the course of many years

and without ever reconciling any source code. Therefore its variants have

diverged a lot from each other. For example some bug fixes have not been

applied to all variants, others have been applied but by different engineers for

each variant, each with their own coding styles. Additionally there are only

5 variants available for this case study. All this makes it extremely difficult

for the extraction to achieve good results. This is what would be expected

when recovering legacy product variants that have not been maintained very

well to be used with our approach.

8.1.1 Draw

The Draw case study is an SPL of simple drawing applications of which

some were used for illustration in previous chapters. It supports 5 features.

Its feature model is shown in Figure 8.1. In total 12 product variants can

be generated.

Base

Wipe Line Rect Color

Figure 8.1: Feature Model for the Draw Case Study

8.1.2 VOD

VOD is an SPL for video-on-demand streaming applications. It supports 11

features of which 6 appear in every variant. The feature model is shown in

Figure 8.2. It allows for the generation of 32 product variants.

8.1. CASE STUDIES 57

VOD

Pause PlayImm StartMovie StartPlayer VRCInterface QuitPlayer SelectMovie

StopMovie DetailChangeServer

Figure 8.2: VOD Feature Model

8.1.3 ArgoUML

The largest case study ArgoUML is an open source UML modeling tool that

was refactored into an SPL [Couto et al., 2011, ArgoUML, 2013]. It has 11

features of which 3 appear in every product variant. According to its feature

model shown in Figure 8.3 there are 256 product variants.

ArgoUML

Diagrams Cognitive Logging

Class State Activity UseCase Collaboration Deployment Sequence

Figure 8.3: ArgoUML Feature Model

8.1.4 ModelAnalyzer

The last case study ModelAnalyzer is a consistency checking and repair

technology. It is not an SPL, but rather its variants were created through

copying from existing variants and then developed independently of each

other by different engineers who each had their own goals. In total we had

5 different variants available with 13 features alltogether. Since ModelAna-

lyzer is not an SPL there is no feature model available. It is unknown how

58 CHAPTER 8. EVALUATION

many possible variants there would be and what features are mandatory or

optional.

The information about the variants (i.e. their source code and the fea-

tures they implement) were obtained through interviews with the respective

developers. Difficulties were for example that some developers had partially

implemented features from other variants they copied from in their code

and just left them in their unfinished state because they did not use that

feature anyway. Also common names for features had to be established be-

cause different developers used different names for the same features. This

is only to emphasize how difficult a case study ModelAnalyzer represents

for the extraction process. Note that no prior cleanup of the variants was

performed at all.

8.2 Dependency Graphs

This section shows the extracted dependency graphs for the Draw and VOD

case studies. Dependencies between artifacts are only extracted by our Ecore

Parser (see Chapter 7). These two case studies are the only ones for which

an Ecore model representation was available in addition to their Java source

code. The Java source code was converted into Ecore models using JaMoPP

[JaMoPP, 2013]. Unfortunately this could not be done for the remaining

case studies due to their size. The extracted dependency graphs are com-

pared to the corresponding feature models to assess whether they are useful

as simple variability models.

The shown dependency graphs are labeled with the corresponding asso-

ciation’s lowest order modules. Base modules are depicted as solid boxes

while derivative modules are depicted as dashed boxes. For better readabil-

ity the self-dependencies are not shown, but they were always by far the

strongest which could be a good indication for the extracted traces being

correct.

Figure 8.4 shows the dependency graph for the Draw case study. Aside

from the self-dependencies the strongest dependencies are towards the asso-

ciation containing the base module base which corresponds to feature BASE

which in turn is the root node of the Draw feature model. The most and

the strongest dependencies originate from the other associations containing

base modules. When only considering these associations the graph resembles

8.2. DEPENDENCY GRAPHS 59

very much the Draw feature model in Figure 8.1.

14

50

27

38

10

1

12

1

1

13

15
1

22

9
2

1

2

1

14

9

base

wipe line rect color

δ1(line,¬color)

δ1(line, color)

δ1(rect,¬color)

δ1(rect, color)

δ1(¬line, rect),δ1(¬line, dpl)

δ1(line, wipe) δ1(rect, wipe) δ1(rect, line)

Figure 8.4: Dependency Graph for Draw Case Study

In Figure 8.5 the dependency graph for the VOD case study is shown. It

is much simpler than the Draw graph. Since for VOD 6 features are always

present in every variant they all appear in one association which is also the

one with the strongest dependencies. All the other associations depend on

it. In terms of modules and the corresponding features this again is reflected

in the feature model in Figure 8.2.

34 32

34 38 31

startplayer, vod, vrcinterface, selectmovie, startmovie, playimm

changeserver stopmovie detail pause quitplayer

Figure 8.5: Dependency Graph for VOD Case Study

60 CHAPTER 8. EVALUATION

8.3 Extraction Metrics

The metrics presented in this section are used to assess the extraction.

Their measurement or computation is performed during the creation of the

database (i.e. during the extraction process) after each newly added prod-

uct and/or on the final database once its generation is completed. Some of

these metrics are computed using the StatisticsTraversal introduced in

Chapter 7. Since the metrics depend not only on the number of input prod-

ucts but also on the features they implement, for each of the case studies 10

runs were performed, each using all the available product variants as input,

but with a random order of the input products. The metrics are computed

for every run and then averaged.

For computing these metrics the Java source code of the case studies was

used and parsed using our Java parser (see Chapter 7).

8.3.1 Runtimes

We measured the runtimes of different portions of the extraction process,

not including the parsing of the input product variants. Figure 8.6 shows

the runtimes after each newly added product. As expected, adding another

product takes longer the larger the database already is.

In Figure 8.7 the total runtimes for creating the complete database con-

taining all available product variants are shown with respect to certain parts

of the extraction process. RuntimeProducts is the execution time of the total

extraction process. Additionally with RuntimeAssociations we measure the

time for adding associations, which is a subset of RuntimeProducts not in-

cluding the process of updating the database with new features. And lastly

we also measure RuntimeModules and RuntimeArtifacts for the portions of

RuntimeAssociations in which the modules and the artifacts are compared

respectively.

The most runtime is spent on processing the modules. The processing

of the artifact trees only takes up a very small portion of the total runtime.

Since the processing of modules is the least optimized code in the current

implementation of the framework this is not troubling. It tells us that it is

worth to spend time making optimizations to that part of the implementa-

tion as suggested in Section 7.1.

8.3. EXTRACTION METRICS 61

0 10 20 30 40 50 60 70 80 90 100

100

101

102

103

104

105

106

107

108

Input Products [%]

R
u

n
ti

m
e

[m
s]

Draw
VOD
ArgoUML
ModelAnalyzer

Figure 8.6: Runtime Overview

8.3.2 Modules per Order

The order of a module is a measure for the number of interacting features.

A module of order o represents o + 1 interacting features. For example

module δ3(base, line, wipe, color) is of order 3 which means it represents

the interaction of 4 features. For every order we compute the total number

of modules with that order that are associated with at least one artifact in

the final database. This metric is interesting because it tells us up to what

order modules actually require artifacts to implement them. Only modules

in A|Modules for every association A in the database are considered here.

Given a number of features in a domain n the highest order derivative

that can appear in that domain is n− 1. However, except for the ModelAn-

62 CHAPTER 8. EVALUATION

Products Associations Modules Artifacts
100

101

102

103

104

105

106

107

R
u

n
ti

m
e

[m
s]

Draw
VOD
ArgoUML
ModelAnalyzer

Figure 8.7: Runtimes Overview

alyzer case study none of the highest order derivative modules actually were

associated with any artifacts. And for ModelAnalyzer that is only due to the

fact that the number of available input products is very small and therefore

the extraction could not rule out the possibility of some of the higher order

derivatives containing code. Considering that it is increasingly unlikely for

higher order derivatives to be associated with artifacts a threshold for the

maximum order of derivatives could be used. This would reduce the num-

ber of modules and hence also reduce the number of generated warnings in

the composition process and decrease the runtime, which, as we saw in the

previous section, is mostly spent on processing modules.

8.3. EXTRACTION METRICS 63

0 1 2 3 4 5 6 7 8 9 10 11 12
100

101

102

103

104

Order [#]

M
o
d

u
le

s
[#

]

Draw
VOD
ArgoUML
ModelAnalyzer

Figure 8.8: Modules per Order Overview

8.3.3 Artifacts

The number of artifacts in the database is a simple metric that hints at the

size of the database. Figure 8.9 shows the number of artifacts after each

newly added product. In every case study it takes only very few input prod-

ucts (less than 5) to have almost all the artifacts available. Further products

improve other metrics like the number of associations or the distinguisha-

bility (see the following metrics) but do not improve much on the number

of available artifacts.

64 CHAPTER 8. EVALUATION

0 10 20 30 40 50 60 70 80 90 100

100

101

102

103

104

105

Input Products [%]

A
rt

if
a
ct

s
[#

]

Draw
VOD
ArgoUML
ModelAnalyzer

Figure 8.9: Artifacts Overview

8.3.4 Associations

The number of associations after each newly added product is shown in

Figure 8.10. Similarly as for the number of artifacts also the number of

associations increases very quickly with the first few input products already,

although not with quite as few. However, it keeps increasing steadily with

more additional products before it finally reaches its peak.

8.3.5 Distinguishability

Distinguishability describes the number of modules per association.

Definition 22 Distinguishability is the average cardinality of all module

sets whose respective associations contain at least one artifact and at least

8.3. EXTRACTION METRICS 65

0 10 20 30 40 50 60 70 80 90 100

100

101

102

Input Products [%]

A
ss

o
ci

at
io

n
s

[#
]

Draw
VOD
ArgoUML
ModelAnalyzer

Figure 8.10: Associations Overview

one module.

Distinguishability =
1

n
∗

n∑
i=1

|associationi|Modules|

where n is the number of associations that contain at least one artifact and

at least one module and associationi is such an association.

This metric basically measures how many modules on average could not

be separated because they never appeared without each other in any of the

input product variants. The optimal value for this metric would be 1, mean-

ing every association containing at least one artifact would have exactly one

module. However, this can only very rarely be achieved due to mandatory

features that can never appear without each other and are present in every

66 CHAPTER 8. EVALUATION

product variant. In Table 8.2 the best reachable distinguishability and the

best actually achieved distinguishability is shown for every case study ex-

cept for ModelAnalyzer because there is no feature model available for it.

The distinguishability improves with the number of input products and is

generally worse the more features there are. As is shown in Figure 8.11 the

distinguishability first gets worse quickly but then improves steadily with

every additional input product. This is in contrast to every other metric so

far. Only the ModelAnalyzer case study does not reach the point where the

distinguishability improves because of the small number of available product

variants.

Case-Study Best Reachable Best Achieved

Draw 21 − 1 = 1 1.9

VOD 26 − 1 = 63 63.8

ArgoUML 23 − 1 = 7 7.9

Table 8.2: Distinguishability Overview

8.4 Composition Metrics

These metrics are used to describe the quality of composed products using

the previously extracted information. The better the extracted informationt

the better the composition will work.

As an initial run the evaluation uses all the existing product variants

in a product portfolio to create the database, recomposes all of them and

computes the composition metrics to show that the extracted information is

sufficient to fully re-engineer all input products. Subsequently the number of

product variants used as input for the creation of the database is decreased

from 100% to 0% in steps by removing products randomly. Next we generate

the products that were not among the input products using the composition

procedure and compare them to the corresponding original product (i.e. the

product with the same set of features) of the portfolio. This allows us to

draw a conclusion on the quality of newly generated products that were

not used as input. Again, the quality of the composed products depends

not only on the number of input product variants, but also on the features

they implement. Therefore for every decreasing step we perform 10 runs

for the current number of input products, where we pick the input products

8.4. COMPOSITION METRICS 67

0 20 40 60 80 100

0

200

400

600

800

1,000

1,200

1,400

1,600

Input Products [%]

D
is

ti
n

gu
is

h
ab

il
it

y
[#

]

Draw
VOD
ArgoUML
ModelAnalyzer

Figure 8.11: Distinguishability Overview

randomly. We compute the composition metrics for every composed product

and then average them over all composed products of all runs with the same

number of input products.

For computing these metrics the Java source code of the case studies was

used and parsed using our Java parser (see Chapter 7). During the evalua-

tion the composition was configured to include all structural dependencies

(i.e. include a parent if at least one of its children is to be included even

if the parent is not part of any of the selected associations) and to leave

cross-tree dependencies between artifacts unresolved. The order of artifacts

was considered as follows: if the correct order of artifacts was among the

allowed orders in the corresponding node’s sequence graph it was considered

as correct, which was always the case in all the case studies.

68 CHAPTER 8. EVALUATION

8.4.1 Correctness

Definition 23 Correctness is the percentage of overlap in artifacts between

a composed product P′ using the extracted information and the corresponding

original product P (correctly aligned and sequenced to the database), where

we consider only artifacts N stored in the database.

Correctness =
‖N ∩ P|RootNode ∩ P′|RootNode‖
‖(N ∩ P|RootNode) ∪ P′|RootNode‖

where N =
⋃

as∈AS

as|RootNode with AS being the set of associations in the

database.

We use the correctness to express the quality of the composed products.

It is affected negatively by surplus artifacts and by missing artifacts that

would have been known to the composition (i.e. contained in the database),

it is not affected however by artifacts that were not part of any of the input

products and hence are not contained in the database.

The correctness for each of the used case studies with respect to the

number of used input products is shown in Figure 8.12. Correctness increases

quickly with the number of input products and reaches a near-optimal value

very quickly at already about 15% of the available products used as input

for the first three case studies. For the ModelAnalyzer it also increases

quickly but then drops again. This is due to the fact that the variants only

share a relatively small portion of their implementation artifacts. And the

remaining large parts can not be separated, which is why with every new

product a lot of surplus is introduced that outweighs the small number of

additional artifacts that become available and are actually needed in the

composed products. What makes it even more difficult is the small number

of product variants available for ModelAnalyzer. Still the correctness lies

between 40-60%.

8.4.2 Completeness

Definition 24 Completeness is the percentage of artifacts from an original

product P (correctly aligned and sequenced to the database) also found in the

corresponding composed product P′.

Completeness =
‖P|RootNode ∩ P′|RootNode‖

‖P|RootNode‖

8.4. COMPOSITION METRICS 69

0 20 40 60 80 100

0

20

40

60

80

100

Input Products [%]

C
o
rr

ec
tn

es
s

[%
]

Draw
VOD
ArgoUML
ModelAnalyzer

Figure 8.12: Correctness Overview

Completeness does not take surplus into account like the correctness

does. It just tells us how much of what should be in a composed product is

actually there, i.e. how much of its implementation could be automatically

composed.

Figure 8.13 shows the completeness for all four case studies. The results

look similar to the correctness. Similarly it reaches a near-optimum early

already at roughly 15% of the available products as input. The results for

the ModelAnalyzer are again not quite as good, but with values between

60% and 75% correctness still promising.

70 CHAPTER 8. EVALUATION

0 20 40 60 80 100

0

20

40

60

80

100

Input Products [%]

C
o
m

p
le

te
n

es
s

[%
]

Draw
VOD
ArgoUML
ModelAnalyzer

Figure 8.13: Completeness Overview

8.5 Analysis

In summary the results look very promising. The runtime for adding new

products increases with the size of the database. The most runtime is taken

up by processing modules, which is also the least optimized part of the frame-

work’s implementation and thus has a lot of potential for optimization. It

makes sense to introduce a threshold for the maximum order of derivatives

that will be computed to decrease the number of issued warnings and the

runtime, because most higher order derivatives do not contain any imple-

mentation artifacts anyway. The number of artifacts in the database as well

as the number extracted associations reach a peak already with very few

input products, which means that the presented approach can already func-

tion well with just few available input products. Only to achieve a good

8.5. ANALYSIS 71

distinguishability it is necessary to have a large set of available products.

What was learned from the extraction metrics also is reflected in the

composition metrics. Composed products achieve high correctness and com-

pleteness with few input products already. Only the ModelAnalyzer case

study did not achieve optimal, albeit still promising, results due to the

highly diverged product variants in combination with the fact that only

very few of these variants were available.

72 CHAPTER 8. EVALUATION

Chapter 9

Threats to Validity

The basic assumption of the presented extraction process is that the different

product variants still have major portions of their implementation artifacts

in common. However, if the variants have diverged too much during their

development this assumption will not hold anymore. While there are ways to

mitigate this (e.g. clone detection techniques) this can still be a challenge

for the extraction. This problem can only arise if the approach is used

at a later point during the development of the different product variants

such that they have had enough time to diverge. If, however, the approach

is applied from the very beginning the different variants will not get the

chance to diverge and this threat will not apply. In this case the extraction

will find almost ideal conditions and benefits from clone-and-own as well as

from systematic reuse (e.g. SPLs) can be leveraged.

The current implementation of modules does not scale for large numbers

of featurs. Fortunately, this is the least optimized part of the extraction and

there is still a lot of optimization potential in this area. The computation

of higher order derivatives that most likely are not associated with any

implementation artifacts can be avoided by introducing a threshold for the

order of derivative modules. Also, often the computation of all modules right

off the start is not necessary, instead modules could be computed during the

extraction process as needed, for example by using representative modules

for a whole class of modules that is only split up when necessary. This way

for example modules formed by features that never appear without each

other never need to be computed and instead are simply represented by a

single placeholder module.

74 CHAPTER 9. THREATS TO VALIDITY

Chapter 10

Related Work

In [Rubin et al., 2013] Rubin et al. present a set of formal operators as

part of a framework for managing and refactoring product variants that

were created through clone-and-own. They applied their operators on three

industrial case studies and describe the activities that were carried out dur-

ing the management of the product variants in the different case studies.

We believe that our work can provide the functionalities of some of these

operators.

In [Rubin and Chechik,] Rubin et al. survey different feature location

techniques. Dit et al. also provide a survey on feature location techniques

in [Dit et al., 2013]. The traceability extraction as part of our presented

extraction approach can also be classified as such a technique.

In [Xue et al., 2012] Xue et al. discuss problems when using information

retrieval techniques to identify features and their implementing code in a

collection of product variants. To overcome these problems they exploit

commonalities and differences of the product variants to improve the results

achieved with information retrieval techniques.

In [Rubin and Chechik, 2012] Rubin et al. suggest two heuristics for

improving the accuracy of feature location techniques when multiple product

variants are available by comparing the code of a variant that contains a

feature of interest to one that does not.

76 CHAPTER 10. RELATED WORK

Chapter 11

Conclusions

We presented an extraction framework for extracting information out of

sets of related product variants. This includes traceability information, pos-

sible orderings of artifacts and dependencies between traces. The evaluation

showed that the extraction performs well with already a small number of

input products and that all input products could always be reconstructed

perfectly from the extracted information. We also found that the extracted

dependency graphs could provide good approximations for simple variability

models.

A brief overview was given about a composition tool that makes use of

this extracted information to automatically compose new product variants

and guide a software engineer in completing them.

Based on this extraction in combination with the composition we pre-

sented an approach for developing and maintaining a product portfolio as

well as recovering legacy product variants for use with the presented ap-

proach.

78 CHAPTER 11. CONCLUSIONS

Chapter 12

Future Work

Our future work includes but is not limited to the following:

• We want to evaluate the approach in more detail by means of more

case studies, ideally using real world software systems from industry.

• To deal with evolutionary changes in product variants that have di-

verged from each other, we plan on applying clone detection techniques

to make the approach more robust in such cases.

• The implementation of modules as well as the implementation of se-

quence graphs should be optimized.

• The extracted dependency graphs look promising as an approximation

for simple variability models, we want to investigate on this further.

80 CHAPTER 12. FUTURE WORK

List of Figures

2.1 SPLE Life-Cycles [Metzger and Pohl, 2007] 7

2.2 Essential Product Line Activities [Northrop, 2008] 8

2.3 Abstract Feature Model Example 9

3.1 Source Code Snippets for Product P1 (BASE, LINE, WIPE) . . . 12

3.2 Artifact Trees for Product P1 15

3.3 Source Code Snippets for Product P2 (BASE, LINE, COLOR) . . 16

3.4 Source Code Snippets for Product P3 (BASE, LINE, RECT, COLOR) 17

3.5 Minus (c)(d), Intersection (e) and Union (f) operations be-

tween $Canvas Nodes of Product P1 (a) and Product P2 (b) . 19

4.1 Comparison of Modules of Association A1 and Association A3 28

4.2 Example Sequence Graph . 31

4.3 Example Dependency Matrix (a) and corresponding Depen-

dency Graph (b) . 33

4.4 Artifact Tree for Matched Classes Canvas and Base with Iden-

tifier BaseCanvas . 35

5.1 Composition Tool Screenshot 40

5.2 Ecore Tree of Class Canvas from Product P1 41

6.1 Framework Overview . 44

7.1 UML Class Diagram for Database, Association, Model and

Feature . 48

7.2 UML Class Diagram for Product, Artifact and Nodes 50

7.3 Sequencing of Ordered Artifacts 52

7.4 UML Class Diagram for Traversals 53

82 LIST OF FIGURES

8.1 Feature Model for the Draw Case Study 56

8.2 VOD Feature Model . 57

8.3 ArgoUML Feature Model . 57

8.4 Dependency Graph for Draw Case Study 59

8.5 Dependency Graph for VOD Case Study 59

8.6 Runtime Overview . 61

8.7 Runtimes Overview . 62

8.8 Modules per Order Overview 63

8.9 Artifacts Overview . 64

8.10 Associations Overview . 65

8.11 Distinguishability Overview 67

8.12 Correctness Overview . 69

8.13 Completeness Overview . 70

List of Tables

3.1 Initial Drawing Application Product Variants 11

8.1 Case Studies Overview . 55

8.2 Distinguishability Overview 66

84 LIST OF TABLES

List of Algorithms

4.1 Traceability Extraction Algorithm 26

4.2 alignAndSequenceTree . 32

86 LIST OF ALGORITHMS

Bibliography

[ArgoUML, 2013] ArgoUML (2013). Argouml-spl project. http://

argouml-spl.tigris.org/. (accessed 2012).

[Clements and Northrop, 2002] Clements, P. and Northrop, L. (2002). Soft-

ware Product Lines: Practices and Patterns. Addison-Wesley.

[Couto et al., 2011] Couto, M. V., Valente, M. T., and Figueiredo, E.

(2011). Extracting software product lines: A case study using conditional

compilation. In CSMR, pages 191–200. IEEE Computer Society.

[Dit et al., 2013] Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D.

(2013). Feature location in source code: a taxonomy and survey. Journal

of Software: Evolution and Process, 25(1):53–95.

[Dubinsky et al., 2013] Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S.,

Becker, M., and Czarnecki, K. (2013). An exploratory study of cloning

in industrial software product lines. In Cleve, A., Ricca, F., and Cerioli,

M., editors, CSMR, pages 25–34. IEEE Computer Society.

[Fischer, 2013] Fischer, S. (to appear in 2013). Feature-based composition of

software-systems. In Master’s Thesis, Johannes Kepler University Linz.

[Haslinger et al., 2011] Haslinger, E. N., Lopez-Herrejon, R. E., and Egyed,

A. (2011). Reverse engineering feature models from programs’ feature

sets. In Pinzger, M., Poshyvanyk, D., and Buckley, J., editors, WCRE,

pages 308–312. IEEE Computer Society.

[JaMoPP, 2013] JaMoPP (2013). Jamopp. http://www.jamopp.org/. (ac-

cessed 2013).

[JCAPI, 2013] JCAPI (2013). Source code analysis using java

6 apis. http://today.java.net/pub/a/today/2008/04/10/

http://argouml-spl.tigris.org/
http://argouml-spl.tigris.org/
http://www.jamopp.org/
http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html
http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html
http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html

88 BIBLIOGRAPHY

source-code-analysis-using-java-6-compiler-apis.html. (ac-

cessed 2012).

[Kishi et al., 2013] Kishi, T., Jarzabek, S., and Gnesi, S., editors (2013).

17th International Software Product Line Conference, SPLC 2013, Tokyo,

Japan - August 26 - 30, 2013. ACM.

[Linsbauer et al., 2013] Linsbauer, L., Lopez-Herrejon, R. E., and Egyed,

A. (2013). Recovering traceability between features and code in product

variants. In [Kishi et al., 2013], pages 131–140.

[Liu et al., 2006] Liu, J., Batory, D., and Lengauer, C. (2006). Feature

oriented refactoring of legacy applications. In Proc. of 28th int. conf.

on Software engineering, ICSE ’06, pages 112–121, New York, NY, USA.

ACM.

[Metzger and Pohl, 2007] Metzger, A. and Pohl, K. (2007). Variability man-

agement in software product line engineering. In ICSE Companion, pages

186–187. IEEE Computer Society.

[Northrop, 2008] Northrop, L. (2008). Software product lines essentials.

http://www.sei.cmu.edu/library/assets/spl-essentials.pdf. (ac-

cessed 2012).

[Rubin and Chechik,] Rubin, J. and Chechik, M. A survey of feature loca-

tion techniques. Domain Engineering: Product Lines, Conceptual Models,

and Languages. Springer, To appear.

[Rubin and Chechik, 2012] Rubin, J. and Chechik, M. (2012). Locating dis-

tinguishing features using diff sets. In ASE, pages 242–245. ACM.

[Rubin et al., 2013] Rubin, J., Czarnecki, K., and Chechik, M. (2013). Man-

aging cloned variants: a framework and experience. In [Kishi et al., 2013],

pages 101–110.

[van d. Linden et al., 2007] van d. Linden, F. J., Schmid, K., and Rommes,

E. (2007). Software Product Lines in Action: The Best Industrial Practice

in Product Line Engineering. Springer.

[Xue et al., 2012] Xue, Y., Xing, Z., and Jarzabek, S. (2012). Feature loca-

tion in a collection of product variants. In WCRE, pages 145–154. IEEE

Computer Society.

http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html
http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html
http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html
http://www.sei.cmu.edu/library/assets/spl-essentials.pdf

Goal

Extracting information out of sets of product variants:

• Statement Level Traceability (ordering, ...)

• Dealing with Non-Unique Traces

• Generalization to other kinds of artifacts (languages or models as

source code or e.g. Ecore)

• Dependencies (uses, used by, parent, children, ...)

• Allow adding new products incrementally.

• Providing a Java implementation of the framework in the form of a

Java library and API.

Danksagung

Ich möchte Univ.-Prof. Dr. Alexander Egyed M. Sc. und Dr. Roberto Erick

Lopez-Herrejon M. Sc. für die hervorragende Unterstützung und Betreuung

danken die sie mir während der Erstellung dieser Arbeit und auch darüber

hinaus zukommen haben lassen.

Besonderer Dank gilt auch meiner Familie die es mir während meines

Studiums sehr leicht gemacht hat und mich unterstützt hat wo immer es

ging.

Lebenslauf

Persönliche Daten

Name Lukas Linsbauer

Geburtsdatum 1. März 1989

Staatsbürgerschaft Österreich

Führerschein B

Ausbildung

2013 - jetzt Master Studium Informatik an der Jo-

hannes Kepler Universität Linz

2009 - 2012 Bachelor Studium Informatik an der Jo-

hannes Kepler Universität Linz

2008 - 2009 Zivildienst als Rettungssanitäter in Linz

2003 - 2008 HTL für EDV und Organisation Leonding

94 BIBLIOGRAPHY

Berufserfahrung

2013 - jetzt Studentischer Mitarbeiter am Institute for

Systems Engineering and Automation an

der JKU

2012 2 Monate Praktikum am Institute for Sys-

tems Engineering and Automation an der

JKU

2010 Freier Dienstnehmer im IT Gewerbe

2009/2010 Angestellter bei Gumpinger Software

2008 Angestellter bei Gumpinger Software

2007/2008 Projektarbeit im Rahmen der

HTL zur Digitalisierung der

Schülerfreifahrtsanträge (digitale Sig-

naturen) in Zusammenarbeit mit OÖVG

und Gevas

2007 7 Wochen Praktikum bei der RACON

Software GmbH

2006 6 Wochen Praktikum bei der RACON

Software GmbH

2004 4 Wochen Praktikum bei der Werbeagen-

tur adeins in Linz (Webentwicklung)

Publikationen

Lukas Linsbauer, Roberto E. Lopez-Herrejon, Alexander Egyed: Recovering

Traceability between Features and Code in Product Variants. SPLC 2013:

131-140

Sonstiges

Leistungsstipendium der TNF JKU für Studienjahr 2009/2010.

Leistungsstipendium der TNF JKU für Studienjahr 2010/2011.

Leistungsstipendium der TNF JKU für Studienjahr 2011/2012.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig

und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und

Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen

Stellen als solche kenntlich gemacht habe. Die vorliegende Masterarbeit ist

mit dem elektronisch übermittelten Textdokument identisch.

Linz, September 2013

Lukas Linsbauer

	Introduction
	Background
	Software Product Lines (SPLs)
	Feature Models (FMs)
	Clone-and-Own

	Basics and Example
	Extraction
	Traceability
	Ordering
	Dependencies
	Identifiers

	Composition
	Warnings
	Dependencies
	Tool

	Approach
	Incremental Way of Use
	Legacy Recovery

	Implementation
	Features and Modules
	Nodes and Artifacts
	Sequence Graph
	Traversals
	Parsers
	Java Parser
	Ecore Parser

	Evaluation
	Case Studies
	Draw
	VOD
	ArgoUML
	ModelAnalyzer

	Dependency Graphs
	Extraction Metrics
	Runtimes
	Modules per Order
	Artifacts
	Associations
	Distinguishability

	Composition Metrics
	Correctness
	Completeness

	Analysis

	Threats to Validity
	Related Work
	Conclusions
	Future Work

